






Phys 200A (Theoretical Mechanics), Problem Set I

Fetter & Walecka, problem #3.2.

Done by Munirov V. R.

1) Lagrangian

The Lagrangian of the system is straightforward:

L = T � V,
L = m

2 l̇2 + m
2 ⌦

2l2 sin2 ✓0 � mgl cos ✓0.

2) Equilibrium orbit

Euler-Lagrange equations of motion:

d
dt

⇣
@L
@ l̇

⌘
� @L

@l = 0,

ml̈ = m⌦2 sin2 ✓0l � mg cos ✓0.
In equilibrium l̈ = 0, so we get the condition for an equilibrium circular orbit:

l0 = g cos ✓0
(⌦ sin ✓0)

2 , QED.

3) Stability

To consider the stability of this orbit against small displacements along the wire

we write l = l0 +4l (�l ! 0) and put it into the equation of motion. By doing

that we get:

�l̈ = ⌦2 sin2 ✓04l,
which tells us that it is unstable equilibrium because coefficient before 4l is

positive.

4) Balance of force

In non-inertial rotational reference frame there are three forces acting on the

point mass: gravitational force mg acting downward, centrifugal force m⌦2l sin ✓0

acting outward from rotational orbit and reaction force of the wire m⌦2 sin ✓0 cos ✓0l+
mg sin ✓0 pointing perpendicular to it . These three forces balance each other.

It is possible to obtain the expression for the reaction force using the method

of Lagrange multipliers.

L = m
2 l̇2 + m

2 l2✓̇2 + m
2 ⌦

2l2 sin2 ✓0 � mgl cos ✓0,
f (✓) = ✓ = ✓0 - constraints.

Equation of motion with constraints:

d
dt

⇣
@L
@✓̇

⌘
� @L

@✓ = � f
@✓ , where � - Lagrange multiplier.

ml2✓̈ = m⌦2l2 cos ✓ sin ✓ + mgl sin ✓ + �,
✓̈ = 0, ✓ = ✓0.

N = �
l = �m⌦2l cos ✓0 sin ✓0 � mg sin ✓0.
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3.8
A point mass m slides without friciton inside a surface of revolution z =
α sin(r/R) whose symmetry axis lied along the direction of a uniform grav-
itational field g. Consider 0 < r/R < 1

2π.
(a) Construct the lagrangian L and compute the equations of motion

for the generalized coordinates r and φ. The lagrangian is

L =
1

2
m

(
ṙ2 + r2φ̇2 +

(α
R

)2
ṙ2 cos2

( r
R

))
−mgα sin

( r
R

)
.

The equation of motion are

d

dt

(
mr2φ̇

)
= 0,

mr̈

(
1 +

(α
R

)2
cos2

( r
R

))
= mrφ̇2 +m

(α
R

)2
ṙ2 sin

( r
R

)
cos

( r
R

)
−mg

α

r
cos

( r
R

)
.

Note that angular momentum is conserved in this system, L ≡ mr2φ̇, so the
equation of motion for generalized coordinate r can be rewritten as

mr̈

(
1 +

(α
R

)2
cos2

( r
R

))
=

L2

mr3
+m

(α
R

)2
ṙ2 sin

( r
R

)
cos

( r
R

)
−mg α

R
cos

( r
R

)
.

(b) Are there stationary horizontal circular orbits? This problem can
be solved using the equation of motion or the effective potential, Ueff =
U + L2/(2mr2). A stationary point, r0 is defined by,

∂Ueff

∂r

∣∣∣∣
r=r0

= 0.

For the effective potential at hand

∂Ueff

∂r
= − L2

mr3
+mg

α

R
cos

( r
R

)
,

which leads to the transcendental equation

L2

m2R2gα
= r̃3

0 cos(r̃0),

where r̃0 = r0/R. Depending on the value left-hand side of the above equa-
tion there can be 0, 1, or 2 stationary points.
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Figure 1: The frequency of oscillation about the equilibrium orbit.

(c) Which of these orbits is stable under small impluses along the sur-
face transverse to the direction of motion? An orbit is stable if the second
derivative of the effective potential is positive,

∂2Ueff

∂r2
=

3L2

mr4
−mg

α

R2
sin

( r
R

)
.

This leads to the condition that a stationary point is stable if

3L2

m2R2gα
> r̃4

0 sin(r̃0).

Substituting our result from the stationary point analysis into this equation
yields

3 > r̃0 tan(r̃0).

Solving this numerically, we see that a stationary point is stable if r̃0 < 1.19.
(d) If the orbit is stable, what is the frequency of oscillation about the

equilibrium orbit? The frequency ω is given by

mω2 =
∂2Ueff

∂r2

∣∣∣∣
r=r0

.

Because there are transcendental equations in the problem it will be easier
to proceed numerically. Figure 1 shows ω2R2/gα as a function of r0/R in
the region where the stationary point is stable.
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