Constants and Factors

Speed of light: $c=299,792,458 \mathrm{~m} / \mathrm{s}$ exactly (about 3×10^{8} meters $/ \mathrm{sec}$)
Newton's constant $G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \mathrm{~kg}$
Earth constants: Acceleration of gravity at surface: $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, Mass: $M_{\text {Earth }}=5.97 \times 10^{24} \mathrm{~kg}$,
radius: $r_{\text {Earth }}=6.37 \times 10^{6} \mathrm{~m}$
Mass of proton and neutron about $1.67 \times 10^{-27} \mathrm{~kg}$
Mass of electron: $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
Density of air: $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$; Density of water: $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$;
1 dyne $=10^{-5}$ Newtons
1 mile $=1609 \mathrm{~m} ; 1$ foot $=0.3048 \mathrm{~m} ; 1$ foot $=12$ inches; $1 \mathrm{mile}=5280 \mathrm{ft}$
1 pound $(\mathrm{lb})=4.448$ Newton, corresponding to the weight from mass of $0.454 \mathrm{~kg} ; 1$ ton $=2000 \mathrm{lb}$ Newton $=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2} ;$ Joule $=$ Newton $\mathrm{m} ;$ Watt $=$ Joule $/ \mathrm{sec}$

Formulas

Velocity as a derivative of position: $\vec{v}=d \vec{r} / d t$
Acceleration as a derivative of velocity: $\vec{a}=d \vec{v} / d t=d^{2} \vec{r} / d t^{2}$
For constant acceleration: $\vec{v}=\vec{v}_{0}+\vec{a} t$
For constant acceleration: $\vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}$
For constant acceleration in a straight line: $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
Frame of reference: $\vec{v}^{\prime}=\vec{v}-\vec{V} ; \vec{v}$ is velocity w.r.t. frame S, \vec{v}^{\prime} is w.r.t. frame S^{\prime} which moves at \vec{V} w.r.t. frame S

Projectile trajectory: (start at $x=0, y=0$, speed v_{0}, angle $\theta_{0}: y=x \tan \theta_{0}-g x^{2} /\left(2 v_{0}^{2} \cos ^{2} \theta_{0}\right)$
Range of projectile above: $x=\left(v_{0}^{2} / g\right) \sin 2 \theta_{0}$
Circular motion at constant speed: $a=v^{2} / r$, toward center of circle
Non-uniform circular motion: radial: $a_{r}=v^{2} / r$, tangential: $a_{t}=d v / d t$
Newton's force law: $\vec{F}_{n e t}=d \vec{p} / d t$, where momentum is $\vec{p}=m \vec{v}$; or if constant mass: $\vec{F}_{n e t}=m \vec{a}$
Weight: $\vec{W}=m \vec{g}$
Hooke's law for a spring: $F=-k x$, where k is the spring constant
Friction: Static: $F_{s} \leq \mu_{k} N$; Kinetic: $F_{k}=\mu_{k} N ; N$ is the Normal Force
Drag Force: $F_{D}=\frac{1}{2} C_{D} \rho A v^{2}$; Terminal velocity: $v_{t}=\sqrt{2 m g /\left(C_{D} \rho A\right)}$
Work (constant force in 1-D): $W=F_{x} \Delta x$; Work (variable force in 3-D): $W=\int_{r_{1}}^{r_{2}} \vec{F} \cdot d \vec{r}$
Kinetic Energy: $K=\frac{1}{2} m v^{2}$, Work-Energy theorem: $W_{\text {net }}=\Delta K$
Power: $P=d W / d t ; P=\vec{F} \cdot \vec{v}$
Conservative forces: $\oint \vec{F} \cdot d \vec{r}=0$; Difference in potental energy is independent of path taken.
Potential Energy: $\Delta U_{A B}=-\int_{A}^{B} \vec{F} \cdot d \vec{r}$; in 1-D: $F_{x}=-d U / d x$
Potential Energy: gravitational near Earth surface: $U=m g h$; spring elastic: $U=\frac{1}{2} k x^{2}$; gravita-
tional in general $U=-G M m / r$
Newton's law of Gravity: $\vec{F}=-\frac{G M m}{r^{2}} \hat{r}$
Orbital period: $T^{2}=4 \pi^{2} r^{3} /(G M)$
Escape velocity: $v_{\mathrm{esc}}=\sqrt{2 G M / r}$
Center of Mass equations: $\vec{F}_{\text {net ext }}=M \frac{d^{2} \vec{R}}{d t^{2}}=M \vec{A} ; \vec{R}=\frac{\sum m_{i} \vec{r}_{i}}{M}=\frac{1}{M} \int \vec{r} d m$
In the absence of external forces the center-of-mass velocity $\vec{V}=\sum m_{i} \vec{v}_{i} / M$ remains constant.
The total momentum is $\vec{P}=\sum m_{i} \vec{v}_{i}$, and $\vec{F}_{\text {net ext }}=d \vec{P} / d t$.
A rocket's speed is given by $M d v / d t=-v_{\text {exhaust }} d M / d t$; or $v_{f}=v_{i}+v_{e x} \ln \left(M_{i} / M_{f}\right)$
The total kinetic energy of a system of particles is $K_{\text {total }}=K_{\mathrm{cm}}+K_{\text {internal }}$, where center-of-mass kinetic energy is $K_{\mathrm{cm}}=\frac{1}{2} M V^{2}$ and $K_{\text {internal }}=\sum \frac{1}{2} m_{i} \tilde{v}_{i}$, where \tilde{v}_{i} is speed relative to center-of-mass.

Collision equations: Impulse: $I=\Delta \vec{p}=\int_{t_{1}}^{t_{2}} \vec{F} d t$; Average force during collison $F_{\text {ave }}=\Delta \vec{p} / d t$.
Momentum is conserved in collisions: Totally inelastic collision: $m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=\left(m_{1}+m_{2}\right) \vec{v}_{f}$.
Kinetic Energy also conserved in elastic collisions:
$m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f} ; \frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}$
In 1-D final velocities can be found from initial velocities and masses:
$v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i} ; v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i}$
Rotational equations: $\omega=d \theta / d t, \alpha=d \omega / d t, v_{t}=\omega r, a_{t}=\alpha r$
Torque: $\vec{\tau}=\vec{r} \times \vec{F}=d \vec{L} / d t=r F \sin \theta$; direction given by Right Hand Rule
Rotational analog of Newton's law: $\tau=I \alpha$, where moment of inertia, $I=\sum m_{i} r_{i}^{2}$ for discrete masses and $I=\int r^{2} d m$ for continuous masses
Rotational kinetic energy: $K_{\text {rot }}=\frac{1}{2} I \omega^{2} ; W_{\text {rot }}=\tau d \theta$
Some moment of inertias: Solid sphere about center: $I=\frac{2}{5} M R^{2}$;
Hollow sphere about center: $I=\frac{2}{3} M R^{2}$; Solid cylinder about axis: $I=\frac{1}{2} M R^{2}$;
Hollow cylinder about axis: $I=M R^{2}$; Thin rod about center: $I=\frac{1}{12} M l^{2}$;
Thin rod about end $I=\frac{1}{3} M l^{2}$
Angular momentum: $\vec{L}=\vec{r} \times \vec{p}=I \vec{\omega}$; direction given by Right Hand Rule
$\vec{A} \times \vec{B}=\hat{i}\left(A_{y} B_{z}-A_{z} B_{y}\right)-\hat{j}\left(A_{z} B_{x}-A_{x} B_{z}\right)+\hat{k}\left(A_{x} B_{y}-A_{y} B_{x}\right)=A B \sin \theta$ (direction by RHR)
Static Equilibrium; $\sum \vec{F}_{i}=0$ and $\sum \vec{\tau}_{i}=0$

