1-5 This is a case of dilation. $T=\gamma T^{\prime}$ in this problem with the proper time $T^{\prime}=T_{0}$

$$
T=\left[1-\left(\frac{v}{c}\right)^{2}\right]^{-1 / 2} T_{0} \Rightarrow \frac{v}{c}=\left[1-\left(\frac{T_{0}}{T}\right)^{2}\right]^{1 / 2}
$$

in this case $T=2 T_{0}, v=\left\{1-\left[\frac{L_{0} / 2}{L_{0}}\right]^{2}\right\}^{1 / 2}=\left[1-\left(\frac{1}{4}\right)\right]^{1 / 2}$ therefore $v=0.866 c$.
1-6 This is a case of length contraction. $L=\frac{L^{\prime}}{\gamma}$ in this problem the proper length $L^{\prime}=L_{0}$,

$$
\begin{aligned}
& L=\left[1-\frac{v^{2}}{c^{2}}\right]^{-1 / 2} L_{0} \Rightarrow v=c\left[1-\left(\frac{L}{L_{0}}\right)^{2}\right]^{1 / 2} ; \text { in this case } L=\frac{L_{0}}{2} \\
& v=\left\{1-\left[\frac{L_{0} / 2}{L_{0}}\right]^{2}\right\}^{1 / 2}=\left[1-\left(\frac{1}{4}\right)\right]^{1 / 2} \text { therefore } v=0.866 c .
\end{aligned}
$$

1-7 The problem is solved by using time dilation. This is also a case of $v \ll c$ so the binomial expansion is used $\Delta t=\gamma \Delta t^{\prime} \cong\left[1+\frac{v^{2}}{2 c^{2}}\right] \Delta t^{\prime}, \Delta t-\Delta t^{\prime}=\frac{v^{2} \Delta t^{\prime}}{2 c^{2}} ; v=\left[\frac{2 c^{2}\left(\Delta t-\Delta t^{\prime}\right)}{\Delta t^{\prime}}\right]^{1 / 2} ;$ $\Delta t=(24 \mathrm{~h} /$ day $)(3600 \mathrm{~s} / \mathrm{h})=86400 \mathrm{~s} ; \Delta t=\Delta t^{\prime}-1=86399 \mathrm{~s}$;

$$
v=\left[\frac{2(86400 \mathrm{~s}-86399 \mathrm{~s})}{86399 \mathrm{~s}}\right]^{1 / 2}=0.0048 c=1.44 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

$1-8 \quad L=\frac{L^{\prime}}{\gamma}$
$\frac{1}{\gamma}=\frac{L}{L^{\prime}}=\left[1-\frac{v^{2}}{c^{2}}\right]^{1 / 2}$
$v=c\left[1-\left(\frac{L}{L^{\prime}}\right)^{2}\right]^{1 / 2}=c\left[1-\left(\frac{75}{100}\right)^{2}\right]^{1 / 2}=0.661 c$
(a) $\tau=\gamma \tau^{\prime}$ where $\beta=\frac{v}{c}$ and

$$
\gamma=\left(1-\beta^{2}\right)^{-1 / 2}=\tau^{\prime}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}=\left(2.6 \times 10^{-8} \mathrm{~s}\right)\left[1-(0.95)^{2}\right]^{-1 / 2}=8.33 \times 10^{-8} \mathrm{~s}
$$

(b) $\quad d=v \tau=(0.95)\left(3 \times 10^{8}\right)\left(8.33 \times 10^{8} \mathrm{~s}\right)=24 \mathrm{~m}$
(a) 70 beats $/ \min$ or $\Delta t^{\prime}=\frac{1}{70} \mathrm{~min}$
(b) $\Delta t=\gamma \Delta t^{\prime}=\left[1-(0.9)^{2}\right]^{-1 / 2}\left(\frac{1}{70}\right) \mathrm{min}=0.0328 \mathrm{~min} /$ beat or the number of beats per minute $\approx 30.5 \approx 31$.
(a) Only the x-component of L_{0} contacts.

$$
\begin{aligned}
L_{x^{\prime}} & =L_{0} \cos \theta_{0} \Rightarrow \frac{L_{x}\left[L_{0} \cos \theta_{0}\right]}{\gamma} \\
L_{y^{\prime}} & =L_{0} \sin \theta_{0} \Rightarrow L_{y}=L_{0} \sin \theta_{0} \\
L & =\left[\left(L_{x}\right)^{2}+\left(L_{y}\right)^{2}\right]^{1 / 2}=\left[\left(\frac{L_{0} \cos \theta_{0}}{\gamma}\right)^{2}+\left(L_{0} \sin \theta_{0}\right)^{2}\right]^{1 / 2} \\
& =L_{0}\left[\cos ^{2} \theta_{0}\left(1-\frac{v^{2}}{c^{2}}\right)+\sin ^{2} \theta_{0}\right]^{1 / 2}=L_{0}\left[1-\frac{v^{2}}{c^{2}} \cos ^{2} \theta_{0}\right]^{1 / 2}
\end{aligned}
$$

(b) As seen by the stationary observer, $\tan \theta=\frac{L_{y}}{L_{x}}=\frac{L_{0} \sin \theta_{0}}{L_{0} \cos \theta_{0} / \gamma}=\gamma \tan \theta_{0}$.

1-16 For an observer approaching a light source, $\lambda_{\mathrm{ob}}=\left[\frac{(1-v / c)^{1 / 2}}{(1+v / c)^{1 / 2}}\right] \lambda_{\text {source }}$. Setting $\beta=\frac{v}{c}$ and after some algebra we find,

$$
\begin{gathered}
\beta=\frac{\lambda_{\text {source }}^{2}-\lambda_{\text {obs }}^{2}}{\lambda_{\text {source }}^{2}+\lambda_{\text {obs }}^{2}}=\frac{(650 \mathrm{~nm})^{2}-(550 \mathrm{~nm})^{2}}{(650 \mathrm{~nm})^{2}+(550 \mathrm{~nm})^{2}}=0.166 \\
v=0.166 c=\left(4.98 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)(2.237 \mathrm{mi} / \mathrm{h})(\mathrm{m} / \mathrm{s})^{-1}=1.11 \times 10^{8} \mathrm{mi} / \mathrm{h} . \\
u_{X A}=-u_{X B} ; u_{X A}^{\prime}=0.7 c=\frac{u_{X A}-u_{X B}}{1-u_{X A} u_{X B} / c^{2}} ; 0.70 c=\frac{2 u_{X A}}{1+\left(u_{X A} / c\right)^{2}} \text { or }
\end{gathered}
$$

$0.70 u_{X A}^{2}-2 c u_{X A}+0.7 c^{2}=0$. Solving this quadratic equation one finds $u_{X A}=0.41 c$ therefore $u_{X B}=-u_{X A}=-0.41 c$.

$$
u_{X}^{\prime}=\frac{u_{X}-v}{1-u_{X} v / c^{2}}=\frac{0.50 c-0.80 c}{1-(0.50 c)(0.80 c) / c^{2}}=-0.50 c
$$

(a) Let event 1 have coordinates $x_{1}=y_{1}=z_{1}=t_{1}=0$ and event 2 have coordinates $x_{2}=100 \mathrm{~mm}, y_{2}=z_{2}=t_{2}=0$. In $S^{\prime}, x_{1}^{\prime}=\gamma\left(x_{1}-v t_{1}\right)=0, y_{1}^{\prime}=y_{1}=0, z_{1}^{\prime}=z_{1}=0$, and $t_{1}^{\prime}=\gamma\left[t_{1}-\left(\frac{v}{c^{2}}\right) x_{1}\right]=0$, with $\gamma=\left[1-\frac{v^{2}}{c^{2}}\right]^{-1 / 2}$ and so $\gamma=\left[1-(0.70)^{2}\right]^{-1 / 2}=1.40$.
In system $S^{\prime}, x_{2}^{\prime}=\gamma\left(x_{2}-v t_{2}\right)=140 \mathrm{~m}, y_{2}^{\prime}=z_{2}^{\prime}=0$, and

$$
t_{2}^{\prime}=\gamma\left[t_{2}-\left(\frac{v}{c^{2}}\right) x_{2}\right]=\frac{(1.4)(-0.70)(100 \mathrm{~m})}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=-0.33 \mu \mathrm{~s}
$$

1-31 In this case, the proper time is T_{0} (the time measured by the students using a clock at rest relative to them). The dilated time measured by the professor is: $\Delta t=\gamma T_{0}$ where $\Delta t=T+t$. Here T is the time she waits before sending a signal and t is the time required for the signal to reach the students. Thus we have: $T+t=\gamma T_{0}$. To determine travel time t, realize that the distance the students will have moved beyond the professor before the signal reaches them is: $d=v(T+t)$. The time required for the signal to travel this distance is: $t=\frac{d}{c}=\frac{v}{c}(T+t)$. Solving for t gives: $t=\left(\frac{v}{c}\right) T\left(1-\frac{v}{c}\right)^{-1}$. Substituting this into the above equation for $(T+t)$ yields: $T+\left(\frac{v}{c}\right) T\left(1-\frac{v}{c}\right)^{-1}=\gamma T_{0}$, or $T\left(1-\frac{v}{c}\right)^{-1}=\gamma T_{0}$. Using the expression for γ this becomes: $T=\left(1-\frac{v}{c}\right)\left[1-\left(\frac{v}{c}\right)^{2}\right]^{-1 / 2} T_{0}$, or

$$
T=T_{0}\left(1-\frac{v}{c}\right)\left[1-\left(\frac{v}{c}\right)^{2}\right]^{-1 / 2}=T_{0}\left[\left(1-\frac{v}{c}\right)\left(1+\frac{v}{c}\right)^{-1}\right]^{1 / 2}
$$

1-37 Einstein's reasoning about lightning striking the ends of a train shows that the moving observer sees the event toward which she is moving, event B, as occurring first. We may take the S-frame coordinates of the events as $(x=0, y=0, z=0, t=0)$ and $(x=100 \mathrm{~m}$, $y=0, z=0, t=0)$. Then the coordinates in S^{\prime} are given by Equations 1.23 to 1.27. Event A is at $\left(x^{\prime}=0, y^{\prime}=0, z^{\prime}=0, t^{\prime}=0\right)$. The time of event B is:

$$
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right)=\frac{1}{\sqrt{1-0.8^{2}}}\left(0-\frac{0.8 c}{c^{2}}(100 \mathrm{~m})\right)=1.667\left(\frac{80 \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}\right)=-4.44 \times 10^{-7} \mathrm{~s}
$$

The time elapsing before A occurs is 444 ns .

