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Problem A1/B6/C8

For this problem, we need to use Faraday’s Law of Induction, which is:

E = −dΦB
dt

(1)

The magnetic flux ΦB through the loop is equal to the magnetic field in the
loop times the area of the loop: ΦB = BA. Since the magnetic field is getting
weaker, we know that the magnetic flux is decreasing, so there is some EMF E
being generated. We’ll deal with the direction in just a moment. dΦB

dt is found

using ∆ΦB

∆t , so equation 1 tells us that E = 0.4 V. EMF is kinda like voltage, so
to find the current through the resistor, we use Ohm’s law: V = IR. We find
that the current through the resistor is ER = 40 mA.
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Now, let’s figure out the direction of the EMF. According to Lenz’s Law,
a changing magnetic flux through a loop induces a current in that loop, and
that current generates a magnetic field that opposes the change in flux. In
this problem, the magnetic field points into the page (⊗), but it’s decreasing.
The induced current will want to reinforce that diminishing magnetic field.
Remember how we find the direction of magnetic field from a current loop: if
we curl our fingers in the direction of current, our thumb points in the direction
of the magnetic field. In this problem, we can do the reverse: point your thumb
into the page, in the direction of the magnetic field generated by the loop, and
your fingers will point in the direction of the current: clockwise. Thus our
induced 40 mA current flows from b to a (choice d).

Note: if the magnetic flux were increasing then the induced current would
generate a magnetic field to oppose this increase. The created magnetic field
would point out of the page (�), so the current would flow counterclockwise.

Problem A2/B1/C6

This problem also employs Faraday’s law, which I gave you in equation (1).
Since this problem deals with a coil of current that is rotating, I’m going to
be a bit more mathematically rigorous in how I treat magnetic flux. In the
previous problem, I just multiplied the magnetic field by the area of the loop
to get the flux. I could do that because the magnetic field was always pointing
perpendicular to the plane of the loop (i.e. parallel to ~A). In this problem, that
is not always true, so we have to say that in general

ΦB = N( ~B · ~A) = N |B||A| cos θ (2)

Here N is the number of turns in the loop, and A is the area. In our setup
θ = ωt because the loop is rotating, so

ΦB = NBA cos(ωt)

In order to find the EMF through this circuit, let’s take the time derivative of
magnetic flux:

E = −dΦB
dt

= − d

dt
[NBA cos(ωt)]

= −NBA[−ω sin(ωt)]

= NBAω sin(ωt)

When the magnetic field is parallel to the area vector, θ = ωt = 0. Since
sin(0) = 0, we know that when the magnetic field is parallel to ~A, the EMF is
zero (choice a).
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Problem A3/B5/C4

Magnetic field lines point outward from the north pole of a magnet. As the
north pole of our bar magnet drops down past the loop of wire, fewer field lines
will pass upward through the loop. Use Lenz’s Law like I explained in problem
1: The magnetic flux points up through the loop, and it’s decreasing. The
loop will have a current induced in it, creating a magnetic field to reinforce the
decreasing flux from the bar magnet. If the loop wants to create a magnetic
field pointing up (use your thumb), then it must have a current flowing in the
direction of your fingers: counterclockwise (choice b).

Problem A4/B3/C1

This problem deals with the dynamics of an R-L circuit, and the way in
which an inductor settles down to equilibrium. If a voltage is applied across a
resistor and an inductor at time t = 0, the current through the inductor is given
by:

IL(t) =
E
R

(
1− e−t/τ

)
where τ =

L

R
(3)

Our switch is closed at time t = 0. e0 = 1, and 1 − 1 = 0, so no current will
flow through the inductor immediately after the switch is closed. That means
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that all the current generated by the battery will flow through the 4 Ω resistor
and the 3 Ω resistor in series, and 12 V/7 Ω = 1.71 A (choice d).

Problem A5/B4/C2

We now move from the time-dependent behavior of inductors to their steady-
state behavior. We know that the EMF (or voltage) across an inductor is given
by:

E = −LdI
dt

(4)

What this means is that inductors respond to fluctuating currents. After our
circuit has been left to sit for a long time, much longer than tau (t � τ), all
the currents in the circuit will have reached their equilibrium values; that is to
say, none of the currents will be fluctuating anymore. If none of the currents
are changing in time, then there will be zero EMF across our inductor, and
it will behave just like a normal wire. When this happens, we’re left with a
simple resistor network. We can combine our 12 Ω and 4 Ω resistors in parallel,
then add that in series with our 3 Ω resistor to get an equivalent resistance of
6 Ω. Dividing, we see that the total current through the circuit is 2 A. Thus the
voltage drop across the two parallel resistors is 6 V, so the current through the
4 Ω resistor is 1.5 A (choice b).

Problem A6/B8/C7

Inductors are circuit components that store energy in the form of magnetic
fields. The total energy stored in an inductor is given by:

U =
1

2
LI2 (5)

If U = 10 J and I = 6 A, we can solve to find L = 0.555̄ H ≈ 0.56 H (choice c).

Problem A7/B7/C5

This is definitely a tricky problem, but it’s possible to calculate the terminal
velocity of the loop. The first piece of information we can use is the fact that
our loop is falling at terminal velocity. Terminal velocity means it’s falling at
a constant rate, neither accelerating nor decelerating. According to Newton’s
Laws, this means that the forces on the loop are balanced - the gravitational
force pulling it down equals the magnetic force pulling it up. Only the top
segment of the loop feels a force upward, because the bottom segment isn’t in
the magnetic field, and the two side segments feel a magnetic force pushing
sideways. So we have:

mg = I`B
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In this equation, we know all the values except for the current I. The current
is given by the EMF in the loop, divided by the resistance (2 Ω) of the loop:
I = E

R . Now we have to find E .
We can solve for E using Faraday’s law (1). The magnetic flux through

the loop is given by ΦB = B`x, where x is the height of the area of flux (i.e.
the height of the region where the loop overlaps the magnetic field). The time
derivative of the magnetic flux gives us the EMF:

|E| =
∣∣∣∣dΦB
dt

∣∣∣∣ =
d

dt
(B`x) = B`v

v is the velocity of the falling loop, and it’s what we want to solve for in the
end.

We now have two expressions for I: one is given by Newton’s laws above,
and the other is given by the EMF. We can set these two expressions equal to
each other, eliminating I and leaving us with an equation we can use to find
the velocity:

I =
mg

B`
=
B`v

R
so v =

mgR

B2`2

Solving, we find v = 5.227 m/s (choice c).

Problem A8/B2/C3

This question is somewhat different from the usual fare, in that it requires you
to have a conceptual understanding of the physics. Lenz’s Law basically states
that loops don’t like it when the magnetic flux through them changes. If the
magnetic flux through a loop decreases, a current will be induced in the loop,
creating a magnetic field to reinforce the decreasing flux. Coversely, if the flux
through a loop increases, a current will be induced, creating a magnetic field
that opposes the increasing flux. Or, as the quiz puts it, “inductive effects
always act in a sense to opppose the change which caused them” (choice a).
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