

FIG. 1: Loop Figure

1B quiz 3 version B

1. A solenoid of length 12 cm consists of a wire wrapped tightly around a wooden core. The magnetic field strength is 4.0 T inside the solenoid. If the solenoid is stretched to 30 cm by applying a force to it, what does the magnetic field become?

- a. 1.6 T
- b. 4.0 T
- c. 10 T
- d. 25 T

2. Two singly ionized isotopes, X and Y , of the same element move with the same speed perpendicular to a uniform magnetic field. Isotope X follows a path of radius 3.32 cm while isotope Y moves along a path 3.45 cm in radius. What is the ratio of the two isotope masses, $\mathrm{mX} / \mathrm{mY}$?

- a. . 92
- b. . 96
- c. 1.04
- d. 1.09

3. A wire coil of area $10 \mathrm{~cm}^{2}$ with 220 turns experiences a maximum torque of $10^{-3} \mathrm{~N} \cdot \mathrm{~m}$ when placed in a magnetic field of $.01 T$. Find the current through the coil.

- a. .09 A
- b. .45 A
- c. 2.2 A
- d. 9.0 A

4. If an electron is released at the equator and falls toward the Earth under the influence of gravity, the magnetic force on the electron will be toward the:

- a. north
- b. south
- c. east
- d. west

5. Two insulated current-carrying straight wires of equal length are arranged in the lab so that Wire A carries a current northward and Wire B carries a current eastward, the wires crossing at their midpoints separated only by their insulation. Which of the following statements are true?

- a. The net force on Wire B is southward.
- b. The net force on Wire A is westward.
- c. There are no forces in any parts of the wires in this situation.
- d. There are forces, but the net force on each wire is zero

6. Two long parallel wires 80 cm apart are carrying currents of 10 A and 20 A in the same direction. What is the magnitude of the magnetic field halfway between the wires?

- a. $5.0 \times 10^{-8} \mathrm{~T}$
- b. $2.5 \times 10^{-6} \mathrm{~T}$
- c. $5.0 \times 10^{-6} \mathrm{~T}$
- d. $1.5 \times 10^{-5} \mathrm{~T}$

7. We have a hollow metallic sphere with radius 5.0 cm . We insert a current loop of radius $2 . \mathrm{cm}$ at the center of the sphere. What is the magnetic flux coming out of the sphere?

- a. 0
- b. $15.7 \mathrm{~T}-\mathrm{m}^{2}$
- c. $6 \times 10^{-7} \mathrm{~T}-\mathrm{m}^{2}$
- d. cannot be determined from information given

8. Consider the square loop with side length 2 cm shown in the figure above, where the current of 6 A divides into flow going through the two resistors of 3Ω (left) and 6Ω (right). The loop is placed in a region of constant magnetic field (created by the bar magnets) of magnitude .01T. What is the total force on the loop? (note: do not include any force on the wires attached to the loop itself)

- a. $6.0 \times 10^{-4} N$ out of the paper
- b. $1.2 \times 10^{-3} \mathrm{~N}$ out of the paper
- c. $6.0 \times 10^{-4} \mathrm{~N}$ into the paper
- d. $7.2 \times 10^{-3} \mathrm{~N}$ into the paper

