

FIG. 1: Figures A, B respectively
1B quiz 2 version B

1. To stun its prey, the electric eel generates a current of .8 Amp, applied across a potential difference of 650 V . How much energy is deposited by the eel in its victim every 2 seconds?

- a. 130 J
- b. 260 J
- c. 520 J
- d. 1040 J

2. An aluminum wire of length $5 L$ and a copper wire of length L have precisely the same resistance. The resistivity of the two materials are: aluminum, $2.8 \times 10^{-8} \Omega-m$ and copper $1.7 \times 10^{-8} \Omega-m$. What is the ratio of the radius of the copper wire to the aluminum wire?

- a. . 05
- b. . 12
- c. . 35
- d. . 87

3. A $1000-\mathrm{V}$ battery, a $3000-\Omega$ resistor and a $0.50-\mu \mathrm{F}$ capacitor are connected in series with a switch.The capacitor is initially uncharged. What is the value of the current the moment after the switch is closed?

- a. 0. A
- b. .33 A
- c. . 66 A
- d. 3.0 A

4. How long is a wire made from a volume $100 \mathrm{~cm}^{3}$ of copper if its resistance is 8.5 ohms? The resistivity of copper is $1.7 \times 10-8 \Omega-\mathrm{m}$.

- a. 7.1 m
- b. $1.7 \times 10^{2} \mathrm{~m}$
- c. $2.2 \times 10^{2} \mathrm{~m}$
- d. $3.0 \times 10^{3} \mathrm{~m}$

5. An electric toaster requires 1100 W at 110 V . What is the resistance of the heating coil?

- a. 7.5Ω
- b. 9.0Ω
- c. 11.0Ω
- d. 13.0Ω

6. The resistors in the circuit shown in Fig B each have a resistance of 100Ω. What is the equivalent resistance of the circuit?

- a. 25Ω
- b. 50Ω
- c. 75Ω
- d. 100Ω

7. Gold has one electron per atom available as charge carriers. The mass density of gold is $19.3 \mathrm{~kg} / \mathrm{m}^{3}$ and its atomic weight is 197 amu . Find the drift speed of the electrons in a wire with circular cross section of radius 3 mm and which is carrying a current of carrying . $1 A$.

- a. $1.4 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
- b. $3.7 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
- c. $5.9 \times 10^{-5} \mathrm{~m} / \mathrm{s}$
- d. $2.7 \times 10^{-2} \mathrm{~m} / \mathrm{s}$

8. How much current flows through the central resistor in Fig A shown above?

- a. . 55 A
- b. . 67 A
- c. . 33 A
- d. 1.11 A

