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All three versions of this quiz have the same questions, just rearranged.
These solutions will follow the order of version A, but I’ve included the num-
berings for versions B and C so you can match them to the problems on your
quiz.

Answers

Version A: 1-a 2-b 3-d 4-a 5-b 6-a 7-d 8-b

Version B: 1-a 2-b 3-a 4-a 5-b 6-b 7-d 8-d

Version C: 1-a 2-a 3-b 4-a 5-b 6-d 7-d 8-b

Problem A1/B4/C4

This problem requires you to convert potential energy into kinetic energy. When
our electron starts out, it has some potential energy because the electric field
from the fixed point charge wants to push it away, but it has no kinetic energy
because it starts from rest. After the electron is allowed to move far away from
the fixed charge (r →∞), it will have some kinetic energy because it is moving,
but no potential energy, because the electric potential drops to zero at large
distances (1).

The electrical potential energy due to two charged particles is given by:

Ue =
keq1q2
r

(1)

Recall from mechanics that the kinetic energy of a moving particle is given by:

K =
1

2
mv2 (2)
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Since energy is conserved, the two quantities must be equal, so:

keq · qe
ri

=
1

2
mev

2
f

Here, q is the charge of the fixed point, qe is the charge of the electron, ri is the
initial distance between the two charges, me is the mass of the electron, and
vf is the final velocity we’re solving for. Plugging in the values, as well as the
electric constant ke, we get vf = 2.5 × 107m/s (choice a.). (Fun Fact: this is
almost 10% of the speed of light!)

Problem A2/B2/C8
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I laid out my square as in this diagram. Yours may look slightly different,
but the math will be the same.

We know that the force on a charged particle is equal to the charge of the
particle times the electric field at the particle’s location:

~F = q · ~E(~r) (3)

Thus, in order for the force on charge B to be zero, the electric field must be
zero at point B’s location. The principle of superposition tells us that the total
electric field at point B’s location is the sum of the electric fields from particles
A, C and D:

~E(~rB) = ~EA + ~EC + ~ED (4)

Looking at the geometry of the setup (and being careful with the direction of
our vectors), we can see that the three electric fields are given by:

~EA =
keqA
d2

ı̂, ~EC =
ke(2)
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(Note that
(

ı̂+̂√
2

)
is a unit vector (length 1) that points at a 45◦ angle. It is

the same as writing ı̂ cos 45◦+ ̂ sin 45◦). If we add these all up, we get that the
total electric field at point B is:

~E(~rB) = ke

(
qA
d2

+
2

2
√

2d2

)
ı̂+ ke

(
qA
d2

+
2

2
√

2d2

)
̂ = 0

We can greatly simplify this equation by cancelling out the ke, the factor of 1
d2 ,

and the 2’s to get qA + 1√
2

= 0, or qA = −1√
2
C = −0.71C (choice b).

Problem A3/B8/C7

This problem involves a simple application of Gauss’s Law, which states that
the total flux of electric field through a closed surface is proportional to the
total charge enclosed within that surface:

Φe = ~E ·A =
Qenc

ε0
(5)

The obvious choice for our Gaussian surface is the sphere of radius 0.6m given
in the problem. The total flux of electric field through this spherical surface
will equal (the surface area of the sphere) × (the electric field strength at the
surface):

4πr2 · E(r) =
Qenc

ε0

From here it’s easy to see that Qenc = 4πr2 ·E(r) · ε0 = −4× 10−9C (choice d).
(Note: we know the enclosed charge is negative because the electric field

points inward. If the electric field pointed outward, that would mean that the
enclosed charge was positive).

Problem A4/B3/C1

There are two ways to do this problem: an easy way, and a way that requires a
bit more work.

The more-work way is to use Coulomb’s Law

~E(~r) =
keq

r2
r̂ (6)

as well as the Principle of Superposition to calculate the total electric field
resulting from each of the two point charges. This requires a bit of punching
into your calculator that we can avoid fairly easily. . .

The easy way is to use symmetry to our advantage. Our two point sources
have equal charge, and are also equidistant from the midpoint where we want
to know the electric field. That means that the electric field from one charge
is equal in magnitude to the electric field from the other charge, as measured
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at the midpoint. However, the fields also point in opposite directions, so they
exactly cancel each other out. Thus, the electric field measured at the midpoint
between the two charges has magnitude = 0 (choice a).

Problem A5/B6/C3

We are trying to figure out the electric field between the two plates of a capacitor.
First, we can find the electric potential between the plates, using the relation
between electric potential, charge and capacitance:

Q = V C (7)

We can rearrange this equation to get V = Q
C . We also know that

V = ~E · d (8)

We can combine these equations to get E = Q
Cd ; plugging in the values given in

the problem, we find E = 225 N/C (choice b).

Problem A6/B1/C2

This problem requires no math, just a conceptual understanding of the behavior
of electric charges and fields. First, note that we have a conducting sphere of
net charge -5 mC. This net charge is permanent–unless the sphere explicitly
has charge added or removed, it will always have a charge of -5 mC. Next,
a charge of +10 mC is inserted into the middle of the sphere. The electric
field due to this +10 mC charge will attract the negatively charged electrons
in the metal, until a charge of -10 mC accumulates on the interior surface of
the sphere, balancing out the charge inserted in the center. This movement of
charge will also cause some positive charges to accumulate on the outer surface
of the conductor. Through all this, the net charge of the sphere must remain -5
mC. Thus, if -10 mC of charge accumulates on the inside surface of the sphere,
then +5 mC of charge must accumulate on the outer surface (choice a).

Problem A7/B7/C6

We have a 3 µC charge located at coordinates (0,3) and we want to know the
electric field at coordinates (4,9). We know the electric field due to a point
charge is given by:

~E(~r) = ke
q

r2
r̂ (9)

There are two parts of the electric field to find here: its magnitude and its
direction.

The magnitude of the electric field is fairly straightforward. We know q =
3µC, and we know (or can look up) the value of ke. Our vector ~r that points
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from (0,3) to (4,9) is equal to (4ı̂ + 6̂). Thus r2 = 42 + 62 = 52. So, the

magnitude of our electric field is |E| = ke
3×10−6

52 = 519V/m.
There are a couple ways to find the direction r̂ of the electric field. We could

use trig, but that gets a bit tricky. The simplest way is to note that r̂ is just ~r
rescaled to have a length (i.e. magnitude) equal to 1. Since ~r = 4ı̂+ 6̂ and has
a magnitude |r| =

√
52, we know r̂ = ~r√

52
= 4ı̂+6̂√

52
= 0.554ı̂+ 0.832̂.

Thus our final answer is ~E(~r) = 519 V/m (0.554ı̂+ 0.832̂) (choice d).

Problem A8/B5/C5
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This problem requires you to know how to combine capacitors in series and in
parallel to find equivalent capacitances. To start off, let us label the capacitors
A, B, C, D as shown above. Capacitors C and D are on the same wire, which
means they are in series. Recall that the rule for addition of capacitors in series
is:

1

Ctotal
=

1

C1
+

1

C2
+ . . .+

1

Cn
(10)

We know that 1
2 + 1

2 = 1, so we can replace capacitors C and D in series with a
single capacitor (call it E) of capacitance 1F. Next, let us combine our equivalent
capacitor E with capacitor B. These two are on separate branches, which means
they are in parallel. The rule for addition of capacitors in parallel is:

Ctotal = C1 + C2 + . . .+ Cn (11)

Thus we can replace capacitors E and B with a single capacitor (call it G) on a
single wire, of capacitance 3F. Finally, let us combine capacitors A and G. They
are in series, and the formula (10) tells us

1

4
+

1

3
=

7

12

so we can replace A and G with a single capacitor of capacitance 12
7 F = 1.71F

(choice b).
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