
Ch. 19 Solutions

These are the problems from the chapter I’ve worked out so far. I’ve gone through the solutions
and corrected several mistakes. For questions, email me at hosam@ucsd.edu

Monday 3:20p: Corrected problem 45.

2.

a) The number of moles of silver is the number of grams divided by the molar mass, which is 10/107.87 = 0.09
moles. Each mole contains 6.02 · 1023 atoms, each of which has 47 electrons. Multiplying it all out gives a
total of 2.55 · 1024 electrons in the pin.

b) The total charge from all the electrons already on the pin is 2.55 · 1024 ×−1.6 · 10−19 = −4.07 · 105C.
Keep in mind that for each electron there is a proton with equal and opposite charge: The pin is neutral
overall. If we add electrons until the total charge is −1mC, then we must add 1mC

1.6·10−19C/elec = 6.25 · 1015

electrons total, or 2.38 new electrons per 109 electrons already present.

3.

An order of magnitude estimate essentially means a ballpark figure, so:
Two persons at arms length is approximately 2 meters. The number of atoms in the body can be roughly

guessed by approximating the body as being made up entirely of water (not a terrible approximation). A
water molecule has around 20 protons and electrons, and a mole of water weighs about 20 grams; a typical
adult human weighs around 100kg. This gives 50 moles per kilogram, equivalent to about 5000 moles of
water per person. Crunching these numbers says that the average individual has a total of ≈ 100, 000 moles
of both protons and electrons, totalling up to about 109 (a billion) Coulombs. The net charge so far is still
zero, since the electrons and protons balance each other out. If we remove 1% of the charge from both, then
the net charge on each is about 107 C. Coulomb’s law can now be used:

Fe = kqQ
r2 = (9·109)(107)(107)

22 ≈ 2.25 ·1023 Newtons. The mass of the earth is 6 ·1024kg, which would require
(via F = mg) ≈ 1025 N to lift – not too far off for such crude approximation.

4.

The charge of a proton is +1.6 · 10−19C, so using Coulomb’s law (above) gives 57.6N. They would repel each
other.

5.

Remember that forces are vectors and thus require vector addition. The x components will add, while the y
components will substract. Compute the magnitude of the force between the 2-7 pair (0.5N), and then the
magnitude between the (-4)-7 pair (1.01N). Then add the x and y components separately. Fx = 0.76N and

Fy = −0.44N . The net force is then |F | =
√
F 2
x + F 2

y = 0.87N . The direction is given by θ = arctan(
Fy

Fx
) =

30.1 degrees clockwise from the positive x-axis.

6.

Newton’s 3rd law guarantees that the force of A on B is the same as that of B on A at all times. Knowing
the force and the distance, you can work backwards with Coulomb’s law to figure out what k · q ·Q is (you
can’t figure out what each charge is separately, and theres no point in punching in the value of k). Knowing
what that value is, write down Coulomb’s law again substituting the above number for k · q ·Q and use the
new distance r = 17.7mm. The final result is 1.56 · 10−6 N. Since particle B is to the right of particle A, its
force must point left (opposite the direction of FAonB).
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7.

The first part is straight Coulomb’s law. Using Gauss’ Law you’ll see that even though the spheres are not
point charges, you can still pretend that all the charge is concentrated at the center. I’ll talk about this later
(Problem 40). The answer to (a) is 2.16 · 10−5N , and the force is attractive.

In part b, connecting the wire will cause current to flow in order to balance out as much charge as
possible. The net charge in this problem is −6nC, which remains the same even after connecting the wire.
After connecting the wire, each sphere will then have a total of −3nC. Using Coulomb’s law again with this
new figure gives F = 9 · 10−7N . Since they both have negative charge after connecting, the spheres would
repel each other.

8.

Equilibrium, as in mechanics, means that the net force on the object is zero. Here there are two forces, one
from each of beads on the end. Coulomb’s law needs the distance between the objects involved, which means
we have to figure out where to measure from. I will choose x = 0 to be where the +3q charge is, and x = d
to be where the +q charge is. We are looking to solve for the position of the grey bead, which I will label x.
Imagine an arrow pointing from x = 0 to wherever the grey bead is, that distance is x (it is a variable right
now since we don’t know where the bead is). Now we can write down Newton’s 2nd law as:

∑
F =

3kq2

x2
− kq2

(d− x)2
= 0

Notice that in the denominators, x, and d− x are the distances from the grey bead to each of the orange
beads (refer to diagram). This becomes an algebra problem for x. Notice that q and k both cancel. I am
subtracting the two forces because the bead on the left pushes to the right, whereas the bead on the right
pushes to the left. Since these directions are opposite, the forces will subtract. Play with the algebra to get
2x2 − 6xd + 3d2 = 0, which you can solve with the quadratic formula (treat d as if it were a number) or
with some clever algebra. The answer is x = 0.634d. You can understand this problem as follows: Each of
the orange charges push the grey charge in opposite directions, and the strength of that push depends on
how far away the grey charge. There must be a place inbetween the two charges that the pushes are equal:
this is the equilibrium position. This equilibrium is NOT stable for negative charges because if you put the
grey charge at the equilibrium spot and poked it slightly, you’ll see that the net force is AWAY from the
equilibrium position causing it to fly off. Both forces point inwards for a positive charge, so it is stable in
that case.

9.

The force between a proton and electron is given by Coulomb’s law. Plug in their charges and the distance
to find F = 8.23 · 10−8N . For the second part you’ll need to remember that the centripetal force (needed for

circular motion) is Fc = mv2

r where v is the velocity of the orbiting object and m is it’s mass. Since the only
force is the electric force between the two and the motion is circular, the net force must equal the centripetal
force:

Fnet =
∑

F =
ke2

r2
=
melecv

2

r
with e being the charge of an electron/proton.

Solving this for v gives v = 2.19 · 106 m/s. Thats 5 million miles per hour.

10.

By weight, they mean the force of gravity on earth (F = mg). Looking up the masses one finds the weights
to be Fp = 1.64 · 10−26N and Fe = 8.93 · 10−30N . In terms of the electric field, the electric force is given
by F = qE. q is the same for both the electron and the proton, but remember that negative charges travel
opposite the direction of the electric field, whereas positive charges travel along the field. Setting each of the
F ’s above equal to qE we find that for the proton we need E = 1.02 · 10−7N/C and for the electron one
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needs E = 5.58 · 10−11N/C. With the above rules for the directions, we know that the electric field will have
to point up for the proton, and down for the electron.

11.

This is just like problem 8, except the two charges on the ends are of opposite sign. The set up and solution
are identical to problem 8; however be careful with the signs when writing down the net electric field. I
choose x = 0 to be where the q = −2.5µC charge is, and x = 1 where the Q = 6µC charge is. The point
where the E field is zero I will call x, again. The equation to look at is then:∑

E = −kq
x2

+
kQ

(1− x)2
= 0

Here k cancels again, and you can substitute in numbers for q and Q. You can again use the quadratic
formula, as in 8, or some clever algebra tricks can simplify the math. The two solutions should be x = 0.39m
and x = −1.82m. The first one is between q and Q, while the second one (since it is negative) is out to the
left of both q and Q. If you consider the direction E points at x = 0.39m for each charge, you will see that
they cant possibly add up to zero, which leaves you with x = −0.1.82m. (Check where it points there too,
for practice.)

12.

This is a similar set up to 8 and 11, except we’re solving for charge instead of location. I’ll call the unknown
charge q and the known charge Q. The origin is where x = 0, and the electric field there is 2kQ/a2. Drawing
a diagram will help with this problem. The net electric field at x = 0 is:

E = EQ + Eq =
kQ

a2
− kq

(3a)2
= ±2kQ

a2

The last equality is just setting the total field equal to the value in the book. The trick here is to realize
that they gave you the magnitude of the field at x = 0, which means it could be both positive and negative.
You’ll have to solve the plus and minus cases separately. I get q = −9Q and q = 27Q.

13.

The electric field will add as a vector, so we will work in components again. Luckily since each charge has
only a horizontal or vertical component it is not so difficult.

6nC charge: Ex = −600N/C,Ey = 0. -3nC charge: Ex = 0, Ey = −2700N/C.
Adding them up is easy, you get total Ex = −600N/C and total Ey = −2700N/C. The total electric field

at the origin is then |E| =
√
E2
x + E2

y = 2765N/C. The direction is again given by θ = arctan(
Ey

Ex
) = 12.5

degrees counterclockwise from the negative x axis. Finding the electric force on the 5nC charge uses the
equation ~F = q ~E. The direction is the same, and the magnitude of the force is F = 5 · 10−9 · 2765 =
1.38 · 10−5N .

14.

Same procedure as 13, just not as nice. Drawing a diagram will help again. Use the pythagorean theorem
to show that each of the two charges is 1.12m from the point of interest (x=0,y=0.5). This is the distance
you’ll use in the electric field equations. Notice that the problem is symmetric about the y-axis: This is more
than just pretty, it means that the force along the x-axis has to be zero.

The electric field due to each charge is identical. Using the standard equation, the magnitude of the electric
field for each of the charges is E = 1.44 ·104N/C. To find the total E-field, add the components of each vector
separately. θ = arctan(0.5

1 ) = 26.6deg giving |Ex| = |E| cos θ = 1.28 · 104N/C and |Ey| = 6.44 · 103N/C.
The symmetry comes in here: Since |Ex| is the same for both, but points in opposite directions (b/c the
charges are on opposite sides of the y-axis), they sum to zero. The y components add directly to give
total Ey = 1.29 · 104N/C, and the total E field points up. The force also points up and is given by
F = qE = −3.85 · 10−2N .
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15.

The electric field at q is not affected by the charge at q, so we include only the effects of the other three
charges.

Ex =
2kq

a2
+

3kq

(
√

2a)2
· cos 45

Ey =
4kq

a2
+

3kq

(
√

2a)2
· sin 45

|E| =
√
E2
x + E2

y = 5.91kqa2 . The force is obtained by multiplying by q, the charge at the location of

interest. The direction is given by θ = arctan(
Ey

Ex
) = 58.8deg CCW from the +x axis.

16.

The electric field far away will be due to the combined field of each of the two charges q. We know this will
be ∑

E = E− + E+ =
kq

r2+
− kq

r2−

It is then convenient to write r+ = r+ a and r− = r− a which one can deduce from the figure. Plugging
this into the above equation gives

E = kq

(
1

(r + a)2
− 1

(r − a)2

)
=
kq

r2

(
1

(1 + a
r )
− 1

(1− a
r )2

)
Since the point in consideration is very far along the x axis, a

r � 1. Using the Taylor expansion for
1

(1±x)2 ≈ 1∓2x gives E = kq
r2 · (1−2ar −1−2 · ar ) = −kqr2 · (

4a
r ) - the answer. Note the answer is negative since

the negative charge is closer to the point of interest than the positive, so its electric field is slightly larger
than that of the positive charge.

You won’t be expected to solve this difficult of a problem on an exam.

17.

Let’s put the center of the rod at x = 0, then we want to find the electric field at x = 36. The field due to
a single point charge is E = kq

r2 , with r the distance away from that charge. Imagine the line to be lots of
small positive charges lumped very close together. Each tiny piece of charge on the line dq will generate a
field dE according to dE = k

r2 dq, with r the distance between that particular piece of the line and the origin.
For each charge dq, the distance from x = 36 can be broken up into two pieces: the distance from x = 36 to
the center of the rod x0 = 36, plus the distance from the center of the rod to the charge in question, call it
x. This latter distance changes depending on which charge along the rod we are talking about. To find the
total field, we add up (integrate) along the entire string:

E =

∫
dE = k

∫
rod

dq

r2
= kλ

∫ 7

−7

1

r2
dx = kλ0

∫ 7

−7

1

(x0 + x)2

Since the rod is uniformly charged, λ = Q
L = 1.57 ·10−4C/m. I also used the chain rule dq = dq

dxdx = λ0dx
to change the integration variable to x. The u-substitution u = x+ x0, du = dx (don’t forget to change the
limits) simplifies the integral to give E = 1.59 · 106N/C. Since the rod is negatively charged, the field points
towards it.
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18.

Refer to problem 17. Using the chain rule, dq = dq
dxdx = λ0dx (by definition of line charge density). Then

E =

∫
dE = k

∫
line

dq

r2
= kλ0

∫ ∞
x0

1

r2
dx = kλ0

∫ ∞
x0

1

x2
dx

The last equality holds because the distance away from the origin of any particular charge along the line
is given by it’s x coordinate. Computing the integral and plugging in the two limits gives E = kλ0

x0
. Since

the line is made up of positive charges, the field will point away from them, meaning that it points left at
the origin.

19.

The axis of a ring means the line passing perpendicular to it and through the center. Looking at the ring
from the side (so that it looks like a horizontal line), the distance from the edge to the center is R = 10cm. As

we go up along the axis, the distance between the charges and the point of interest increases: r =
√
R2 + y2,

where y is the distance up along the axis. λ = Q/L = 1.19 · 10−4C/m, and we will again use dq = dq
d`d`

It just so happens that, at a given y, the distance from each charge to the observation point is exactly
the same. However, the difficulty in this problem is that the direction of the electric field changes with each
charge. To see this consider two charges on opposite points along the ring (draw a diameter, and consider the
charges on the ends of the diameter). Both charges are positive meaning the electric field will point upwards
and away from them; however, as in problem 14 the x components cancel by symmetry. The total field
therefore points up, but its magnitude its reduced because only the y component survives, and Ey = E cos θ
where θ is the angle between the line pointing down from the observation point along the y axis to the center
and the line pointing from the observation point to the ring edge. Using the diagram you have you can see
cos θ = y

r . Write down the integral:

Ey =

∫
dEy = k

∫
dq

r2
cos θ = kλ

∫
ring

1

r2
y

r
d` = kλ

∫
ring

y(√
R2 + y2

)3/2 d`
The integral is therefore over a constant (for a given y), and so E = kλ y

(R2+y2)3/2

∫
ring

d` = kλ 2πRy
(R2+y2 )3/2.

Here, I used the fact that adding up the distance along a ring just gives you the ring’s circumference. Now
plug in values for y to solve the problem (all values in N/C):

a)6.63 · 106

b)2.41 · 107

c)6.38 · 106

d)6.63 · 105

20.

Above we showed that for a ring the electric field along at a distance y along the axis is E(y) = kλ 2πRy
(R2+y2)

3/2
.

Recall from calculus that the maximum of a function occurs when its derivative is equal to zero. Set the
derivative (quotient rule) equal to zero and solve for the value of y:

E′(ymax) = 2πkλR
(

1
(R2+y2max)

3/2 −
3y2max

(R2+y2max)
5/2

)
= 0→ ymax = R√

2

Plug this into E(y) to find the the value of E.

21.

Notice the problem is symmetric about the x-axis. This immediately implies that Ey = 0, so I won’t bother
showing it. Once again, integrate over each charge on the half ring keeping only the x component. Define θ
to be the angle between the horizontal line connecting the point O to the ring and the line pointing to the
charge dq in question (diagram). Note also since O is the center of the circle, the distance from each charge
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to O is the same - namely 1
2C = 1

2 (2πr)→ r = .14
π cm = 4.46cm and so r is a constant. Also here, d` = rdθ

(differential form for the arclength in terms of the angle ` = rθ).

Ex =

∫
dEx = k

∫
dq

r2
cos θ =

kλr

r2

∫ π/2

−π/2
cos θdθ =

kλ

r
(1− (−1)) = 2.17 · 107N/C

Since the ring is negatively charged, the field points towards the ring at O (directly left).

22.

The x component vanishes by symmetry as in the previous problems. The distance to each charge is no
longer a constant as we move along the rod, so r =

√
y2 + x2 won’t fall out of the integral. Again, dq = λdx

Ey =

∫
dEy = k

∫
line

dq

r2
cos θ = kλ

∫ `
2

− `
2

y

(x2 + y2)3/2
dx

To do this integral, substitute x = y tan θ, dx = y sec2 θdθ and note 1 + tan2 θ = sec2 θ = 1
cos2 θ to get

Ey =
kyλ

y2

∫ θ0

−θ0

cos3 θ

cos2 θ
dθ =

2kλ sin θ0
y

As the length of the rod goes to infinity, θ0 gets closer and closer to 90 degrees, and so sin θ0 → 1. This
gives the desired result.

23.

The two faces of the cylinder have a total area of 2πR2 = 4.0 · 10−3m2, while the curved part has an area
C · ` = 9.4 · 10−3m2. The volume of the cylinder is V = πR2` = 1.12 · 10−4m3. The charges therefore are
given by Q = σA and Q = ρV

a) 2.01 · 10−10C
b) 1.41 · 10−10C
c) 5.60 · 10−11C

24.

By Gauss’ Law, the flux flowing through a surface is proportional to the charge enclosed by that surface.
Imagine a gaussian surface surrounding only q2: for this surface there are 18 flux lines that flow out. For
a surface surrounding only q1, there are 6 field lines, which means that q2 must be three times larger than
q1, q1

q2
= 1

3 . Since the field lines flow out of q2 and into q1, their charges must be positive and negative,
respectively.

25.

Solution is drawn in the back.

26.

All coordinates in the graph are multiplied by a. The location where the field is zero is at (x=0,y=1), which
is infact the centroid of the triangle (symmetry, again). The field at P due to both charges is the sum of the
forces of each. The x components cancel by symmetry, and the y component is proportional to the cosine of
the angle between the line pointing straight down from P to the midpoint between the two charges and the

line connecting P to either charge. This angle is 30 degrees. Thus Ey = 2kq
a2 ·

√
3
2 .
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27.

The acceleration is given by Newton’s Law, Fnet = ma = qE → a = qE/m = 6.13 · 1010m/s2. Since the
proton is in a constant electric field, the acceleration is uniform and the standard kinematics equations give
v = at→ t = 19.5µs, x = 1

2at
2 = 11.7m, and KE = 1

2mv
2 = 1.2 · 10−15J .

28.

The work done by a constant force is equal to W = F∆x cos θ = eEδx cos θ where ∆x is the distance travelled
and θ is the angle between the force and displacement. Here, the force serves to slow down the particle, which
means the force is opposite the displacement (θ = 180deg). To stop the particle, all of its KE must vanish,
meaning the work done equals the KE. To stop in a distance d one has KE = eEd → E = KE

ed where e is
the electron charge.

29.

a) Since the field (hence the force) is vertical, the horizontal component of the velocity doesn’t change. For
constant velocity d = vt→ t = d

v = 1.11 · 10−7s.
b) In the vertical direction, the net force on the proton is F = qE = 1.54 · 10−15N . Dividing by the mass

of the proton gives a = 9.2 · 1011m/s2 so that ∆y = 1
2at

2 = 5.67 · 10−3m.
c) The horizontal velocity does not change since there is no force in the horizontal direction: vx = 4.5∗105

m/s. The vertical velocity increases since the proton is accelerating: vfy = viy + at = 0 + 1.02 · 105 m/s.

30.

The expression for electric flux is given by Φe = ~E · ~A = |E||A| cos θ where θ is the angle between the
electric field vector and the vector perpendicular to the area (perpendicular to the car). Plugging in gives
Φe = 3.55 · 105Nm2/C.

31.

The electric flux is given by Gauss’ Law: Φe = ~E · ~A = |E||A| cos θ. This quantity is maximum when cos θ = 1,
which means that Φe = EA → E = 4.14 · 106 N/C after having used A = πR2. Don’t forget to change the
diameter (given) into a radius.
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32.

Gauss’ law says Φe = E · A = Qenc

ε0
. A is the surface area of the sphere, A = 4πR2 = 7.1m2 which tells us

that Qenc = 5.58 · 10−8C.

33.

Since all the flux entering the flat surface must exit somewhere (flux always flows), we know that the total
flux going out of the curved surface must equal that going in through the flat. This is also seen by noting
that since the blue semisphere contains no charge, Gauss’ law says the net flux exitting through its surface
must be zero: all flux inside must flow out. Now, if the semisphere were instead a full sphere, it would fully
enclose the charge and we know by Gauss’ Law that the flux is then q

ε0
. However, symmetry requires that

half the flux go through the bottom of this sphere and half through the top. If we then remove the top, the
flux through the bottom remains half the total: Φe = q

2ε0
. The remainder of the flux just shoots out towards

where the top sphere previously was.

34.

A cube has six identical sides. With the charge in the center, there’s no reason more flux should come out
of one side than any other, so the total flux splits six ways through each face. The total flux is Φe = q

ε0
=

1.92 · 107Nm2/C and the flux through each face is 1
6 that amount. If the charge were not in the center, the

total flux through the cube remains the same (the cube still encloses the charge) but the flux through each
face depends on the new position. Imagine you moved the charge very close to one side. Flux still flows
outwards from the charge as before, but much more will flow through the side closest to the charge: The flux
no longer splits evenly between the six sides.

40.

Note: This problem is conceptually important but difficult. opioo
A general note on Gaussian surfaces: Gauss’ law takes the form of Coulomb’s Law when the surfaces

involved are all concentric and spherical. Concentric means the centers of each spherical shape is in the same
spot as the others. The reason is because when everything is spherically symmetric, the gaussian surface
takes the shape of a shell. Solving Φe = E(4πR2) = qenc

ε0
for E gives E = kqenc

R2 where R is the radius of the
gaussian shell. Using F = qE you get Coulomb’s Law. This is also why in problem 7 we didnt have to worry
about the charges not being points.

Imagine the insulating solid sphere is glass, and the imaginary gaussian surface was made of mesh and
spherically shaped. We apply Gauss’ law to the spherical mesh shell. Call the radius of the glass ball Rst,
and the radius of the mesh shell Rm. Now, since the mesh is imaginary we can shrink and expand it as we
please – Rm is a variable; on the other hand Rst, the size of the see-through ball, is fixed at a constant value.
As we increase the radius of the mesh, it will enclose more charge until we reach the surface of the glass
ball, at which point increasing the size of the mesh surface doesn’t enclose any more charge (since making
it bigger only encloses more empty space). So, while the mesh grows but is still smaller than the glass ball,
Qenc grows with the volume (since the volume charge density is constant Q = ρV ): Qenc = ρ 4

3πR
3
m. Then

Φe = Qenc

ε0
= ρ

ε
4
3πR

3
m where ρ = Q/V . However, the moment the size of the mesh shell surpasses the size

of the glass ball, an increase in mesh size no longer encloses more charge. This means that when Rm > Rst,
the flux no longer increases: Φe = const = Q

ε0
.

A graph of this would look like f(r) = r3 for a little while, then suddenly change into f(r) = constant (a
horizontal line) at the value where r = Rst.

45.

If you liked the mesh/glass analogy you can use it here. It will definitely help to draw 3 concentric circles
labeled 3,4, and 5. You can add the mesh with a dotted circle as needed. The equation I’m using is Gauss’
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law for spherical shapes: E = kQenc

r2

a) Any solid conductor has all of its charge on the surface of that conductor. This is a property of
conductors only. If we draw a gaussian sphere anywhere within the solid ball, it must enclose no charge.
Qenc = 0 means that E = 0.

b) At r = 3cm, our gaussian sphere encloses all of the charge on the inner ball, and none of the charge
contained on the shell. Qenc is then the charge contained on the inner ball, 8µC. Plugging in these numbers
gives E = 8 · 107N/C. Since Qtot is positive, we know the net field must point away from the center.

For c and d:
Since the outer conductor is a shell, it has both an inner surface and an outer surface. All of the charge in

any conductor resides on the surface, so the −4µC on this shell will be spread between both of these surfaces.
Now, since we are looking for the electric field inside a conductor, we know that E = 0 there. That means
that Qenc must also be zero. Since any gaussian shell with r > 2cm automatically encloses the −8µC on the
inner ball, drawing a gaussian shell with 4 < r < 5 would show that there must be +8µC on the inner surface
of the actual shell. Since the total charge on the shell is −4µC, there must be 4µC on the outer (r = 5cm)
surface.

c) At r = 4.5cm, we now acquire some charge from the spherical shell since the dotted circle is between
4 and 5. Qenc = 0 as I showed above, which means that E = 0. This shouldn’t be a surprise, r = 4.5cm is
located within a conductor after all.

d) At r = 7cm the gaussian surface encloses all of the charge in the problem, Qenc = 4µC and E =
7.36 · 106N/C. Positive net charge means the electric field points outwards at this location.

50.

Since the electric field points down, it means that the charge on the surface is negative. Electric field points
from positive to negative. To find the charge density, recall that for a planar conductor (flat surface),
E = σ

ε0
→ σ = 1.06 · 10−9C/m2. The charge density represents how much charge there is per unit area.

If we want to find out how much charge would be on the entire earth’s surface, Q = σA = 4πσR2
earth.

Rearth = 6 · 106m so Q = 4.79 · 105C. The number of electrons needed is 2.99 · 1024.

54.

The ball is in equilibrium, so we know the net force is zero. There are three forces in this problem. Gravity
is trying to pull the ball downards, the electric field exerts a force pulling the ball to the right. The string’s
tension serves to keep the ball in place. Write down the x and y components of Newton’s 2nd law:

∑
Fx = qE − Tx = 0∑

Fy = −mg + Ty = 0

If you dont know why the signs are this way, draw a force diagram for the three forces and compare
the relative directions of the arrows to the corresponding +/- in the equations. I chose up to be positive
and chose right to be positive. θ = 15 degrees measured from the y-axis, so in this case Tx = T sin θ and
Ty = T cos θ. Plug numbers into the second equation to solve for T , then plug T into the first equation to
solve for q. I get q = 5.25µC, positive since it is being pulled along the field.
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