PHYSICS 161

Homework no. 1: Due Thurs. Jan. 26
1
Hartle chp.3, prob 2
2
The spacetime interval, Δs, between two events with coordinates

$$
\left(x_{1}, y_{1}, z_{1}, t_{1}\right) \operatorname{and}\left(x_{2}, y_{2}, z_{2}, t_{2}\right)
$$

is defined by

$$
(\Delta s)^{2}=(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}-(c \Delta t)^{2}
$$

(a) Use the Lorentz transformations given in class to show that Δs has the same value in all inertial reference frames. The spacetime interval should be invariant under Lorentz transformations.
(b) If $(\Delta s)^{2}<\mathbf{0}$, then the interval is timelike. Show in this case,

$$
(\Delta \tau)^{2}=-\left(\frac{\Delta s}{c}\right)^{2},
$$

where $\Delta \tau$ is the proper time interval between two events. If $t_{1}<t_{2}$. could the first event possibly caused the second event?
(c) if $(\Delta s)^{2}=0$, the interval is lightlike. Show that only light could have traveled between the 2 events. Could the first event have possibly cause the second event?
(d) If $(\Delta s)^{2}>\mathbf{0}$, then the interval is spacelike. Could the first event have caused the second event?

3
τ Ceti is the closest single star that is similar to the sun. At time $t=0$, Alice leaves Earth in her starship and travels at speed of $0.95 c$ to τ Ceti which is 11.7 light years away as measured by astronomers on Earth. Her twin brother, Bob, remains at home, at $x=0$ (a) According to Bob, what is the interval between Alice's leaving Earth and arriving at τ Ceti ?
(b) According to Alice, what is the interval between her leaving Earth and arriving at τ Ceti?
(c) Upon arriving at τ Ceti, Alice immediately turns around and returns to earth at speed of 0.95 c (assume turn around time is 0 seconds). What is the proper time for Alice during her round trip to τ Ceti.
(d)When she and Bob meet on her return to earth, how much younger will Alice be than her brother?
4
(a) Suppose O^{\prime} observer moves with velocity U along positive x axis with respect to O observer. Use inverse Lorentz transformations $\left(x^{\prime}, t^{\prime}\right) \rightarrow(x, t)$ to show how x velocity of particle in O^{\prime} frame, v^{\prime} appears in O frame. Use the inverse Lorentz transformations given in class to work out addition law of velocities.
(b) Suppose $v^{\prime}=c$. What is velocity of particle in O frame?

