PHYS 2D
 DISCUSSION SECTION

\square Quiz this Friday
\square QM in 3D (math really)

More Realistic QM

\square Our world is 3 dimensional
\square Must use 3 coordinates
\square Study 2 cases:

- Particle in a 3D box
-Essentially the same thing
- Hydrogen atom
-Spherical coordinates, very different

Particle in a 3D box

Choose Cartesian coordinates x, y, z

\square Schrodinger's equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(x, y, z, t)+U(x, y, z) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, y, z, t)}{\partial t} \quad \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

\square Separation of variables 1:

- $\Psi(x, y, z, t)=\psi(x, y, z) \phi(t)$
- Yields $-\frac{\hbar^{2}}{2 \mathrm{~m}} \nabla^{2} \psi(x, y, z)+U(x, y, z) \psi(x, y, z)=E \psi(x, y, z)$
- $\phi(t)=\exp (-i \omega t), E=\hbar \omega$

Particle in a 3D box

\square Separation of variables 2:
$-\psi(x, y, z)=\psi_{1}(x) \Psi_{2}(y) \Psi_{3}(z)$

- Dividing by $\Psi(x, y, z)$ yields

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{1}(x)} \frac{\partial^{2} \psi_{1}(x)}{\partial x^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{2}(y)} \frac{\partial^{2} \psi_{2}(y)}{\partial y^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{3}(z)} \frac{\partial^{2} \psi_{3}(z)}{\partial z^{2}}\right)=E=\text { Const }
$$

- Each part must be independent of coordinates, so

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{1}(x)}{\partial x^{2}}=E_{1} \psi_{1}(x)-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{2}(y)}{\partial y^{2}}=E_{2} \psi_{2}(y)-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{3}(z)}{\partial z^{2}}=E_{3} \psi_{3}(z)
$$

$$
\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}=\mathrm{E}=\text { Constant }
$$

Particle in a 3D box

\square We have essentially three 1D problems

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{1}(x)}{\partial x^{2}}=E_{1} \psi_{1}(x)-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{2}(y)}{\partial y^{2}}=E_{2} \psi_{2}(y)-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{3}(z)}{\partial z^{2}}=E_{3} \psi_{3}(z)
$$

$-\psi_{1}=A \sin { }_{1} x=A \sin \left[\left(n_{1} \pi / L\right) x\right]$

- $\Psi_{2}=B \sin k_{2} y=B \sin \left[\left(n_{2} \pi / L\right) y\right]$
- $\psi_{3}=C \operatorname{sink}{ }_{3} z=C \sin \left[\left(n_{3} \pi / L\right) z\right]$
$E_{1}=\frac{n_{1}{ }^{2} \pi^{2} \hbar^{2}}{2 m L^{2}} \quad E_{2}=\frac{n_{2}{ }^{2} \pi^{2} \hbar^{2}}{2 m L^{2}} \quad E_{3}=\frac{n_{3}{ }^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}$
$\square E=E_{1}+E_{2}+E_{3}$

Particle in a 3D box

$\square \Psi(x, y, z, t)=\psi(x, y, z) \phi(t)=\psi_{1}(x) \psi_{2}(y) \psi_{3}(z) \phi(t)$
$\Psi(\mathrm{T}, \mathrm{t})=\psi(\mathrm{T}) \mathrm{e}^{-\mathrm{E}^{-\mathrm{E}^{\prime}}{ }^{t}=A\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{-\mathrm{E}^{-\mathrm{E}_{t}}} .}$
\square Normalization: $1=\iiint_{x, y z} \mathrm{P}(\mathrm{r}) \mathrm{dx} \mathrm{dydz}$
$\Rightarrow A=\left[\frac{2}{L}\right]^{\frac{3}{2}}$ and $\Psi\left(\overrightarrow{\mathrm{r}, \mathrm{t})}=\left[\frac{2}{L}\right]^{\frac{3}{2}}\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{-\mathrm{F} \mathrm{E}_{t}}\right.$
$\square k_{i}=n_{i} \pi / L$
\square Need 3 "quantum numbers" $n_{1} n_{2} n_{3}$ to specify a state

Particle in a 3D box

\square Degeneracy: If different sets of $\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}\right)$ correspond to the same E , they are said to be degenerate states

$$
\mathrm{E}_{\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right) ; \mathrm{n}_{\mathrm{i}}=1,2,3 \ldots \infty, n_{i} \neq 0
$$

Ground State Energy $\mathrm{E}_{111}=\frac{3 \pi^{2} \hbar^{2}}{2 m L^{2}}$

	n^{2} Degeneracy		
$4 E_{0}$	12	None	$(2,2,2)$
$\frac{11}{3} E_{0}$	11	3	$(3,1,1)$
$3 E_{0}$	9	3	$(2,2,1)$
$2 E_{0}$	6	3	$(2,1,1)$
E_{0}	3	None	$(1,1,1)$

Hydrogen atom

$\square-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(x, y, z, t)+U(x, y, z) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, y, z, t)}{\partial t}$
\square Want to find wave function of the electron
\square Wave function can be described using any 3D coordinate system
$\square \mathrm{U}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \sim 1 / \mathrm{r}$
\square The system is spherically symmetric: a positive charge at the center
\square More natural to use spherical coordinates (r, θ, ϕ) than Cartesian coordinates (x, y, z)
\square The differential equation is very different
\square So the wave functions also look very different

Steps to finding the wave function

\square To find the wave function, method is still the same:

- Write out the form of the differential equation
- Separation of variables, $\Psi(r, \theta, \phi, t)=R(r) \Theta(\theta) \Phi(\phi) T(t)$
- Separate the equation into 4 parts
- Solve each part
- The 3 spatial parts will each give a quantum number
- Combine all 4 parts and normalize

Spherical coordinates

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\varphi & =\arctan \left(\frac{y}{x}\right) \\
\theta & =\arccos \left(\frac{z}{r}\right)
\end{aligned}
$$

Schrodinger's equation

$$
\nabla^{2}=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial^{2} \phi}
$$

\square Multiply Schrodinger's equation by $-2 \mathrm{~m} / \hbar^{2}$

$$
\begin{aligned}
& \frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi(\mathrm{r}, \theta, \phi)}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi(\mathrm{r}, \theta, \phi)}{\partial \theta}\right)+ \\
& \frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi(\mathrm{r}, \theta, \phi)}{\partial^{2} \phi}+\frac{2 \mathrm{~m}}{\hbar^{2}}(\mathrm{E}-\mathrm{U}(\mathrm{r})) \psi(\mathrm{r}, \theta, \phi)=0
\end{aligned}
$$

$$
U(r)=\frac{k Z e^{2}}{r}
$$

Separation of variables

$\square \begin{gathered}\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi(\mathrm{r}, \theta, \phi)}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi(\mathrm{r}, \theta, \phi)}{\partial \theta}\right)+ \\ \frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi(\mathrm{r}, \theta, \phi)}{\partial^{2} \phi}+\frac{2 \mathrm{~m}}{\hbar^{2}}(\mathrm{E}-\mathrm{U}(\mathrm{r})) \psi(\mathrm{r}, \theta, \phi)=0\end{gathered}$
$\square \quad \psi(\mathrm{r}, \theta, \phi)=\mathrm{R}(\mathrm{r}) . \Theta(\theta) . \Phi(\phi)$

$$
\begin{aligned}
& \frac{\partial \Psi(r, \theta, \phi)}{\partial \mathrm{r}}=\Theta(\theta) \cdot \Phi(\phi) \frac{\partial \mathrm{R}(\mathrm{r})}{\partial \mathrm{r}} \\
& \frac{\partial \Psi(r, \theta, \phi)}{\partial \theta}=R(r) \Phi(\phi) \frac{\partial \Theta(\theta)}{\partial \theta} \\
& \frac{\partial \Psi(r, \theta, \phi)}{\partial \theta}=R(r) \Theta(\theta) \frac{\partial \Phi(\phi)}{\partial \phi}
\end{aligned}
$$

\square Multiply by $r \sin ^{2} \theta /($ ROФ $)$

$$
\frac{\sin ^{2} \theta}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\frac{\sin \theta}{\Theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)+\frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial^{2} \phi}+\frac{2 \mathrm{~m} r^{2} \sin ^{2} \theta}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)=0
$$

$$
\frac{\sin ^{2} \theta}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\frac{\sin \theta}{\Theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)+\frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial^{2} \phi}+\frac{2 \mathrm{~m}^{2} \sin ^{2} \theta}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)=0
$$

$\square \Phi(\phi)$ is the first the be separated
\square The rest of the equation does not depend on ϕ, so
$\frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial^{2} \phi}$ is some constant
\square Periodic boundary condition: $\Phi(\phi+2 \pi)=\Phi(\phi)$
$\square \frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial^{2} \phi}=-\left(m_{l}\right)^{2}, \Phi(\phi) \sim \exp \left(\operatorname{im}_{\mid} \phi\right)$
\square Boundary condition $\Phi(\phi+2 \pi)=\Phi(\phi)$ is satisfied

$\Theta(\theta) \& R(r)$

\square Now that we've dealt with $\Phi(\phi)$

$$
\begin{gathered}
\frac{\sin ^{2} \theta}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\frac{\sin \theta}{\Theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)+\frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial^{2} \phi}+\frac{2 \mathrm{~m} r^{2} \sin ^{2} \theta}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)=0 \\
: \frac{\sin ^{2} \theta}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\frac{\sin \theta}{\Theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)+\frac{2 \mathrm{~m} r^{2} \sin ^{2} \theta}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)=\mathrm{m}_{l}^{2}
\end{gathered}
$$

\square Divide by $\sin ^{2} \theta$ and separate r \& θ terms

$$
\frac{1}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\frac{2 \mathrm{~m} r^{2}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)=\frac{\mathrm{m}_{l}^{2}}{\sin ^{2} \theta}-\frac{1}{\Theta \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)
$$

\square Some smart guy solved the θ differential equation and found that solutions exist only when

$$
\text { LHS }=\text { const }=\text { RHS }=l(l+1)
$$

Separated equations

\square After separation, we have

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \Phi}{d \phi^{2}}+\mathrm{m}_{l}^{2} \Phi=0 \ldots \ldots \ldots(1) \\
& \frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[l(l+1)-\frac{\mathrm{m}_{l}^{2}}{\sin ^{2} \theta}\right] \Theta(\theta)=0 \ldots . . \tag{2}\\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\left[\frac{2 \mathrm{~m} r^{2}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)-\frac{l(l+1)}{r^{2}}\right] R(r)=0 \ldots \tag{3}
\end{align*}
$$

\square All solved by smart people (Legendre, Laguerre)

$\Theta(\theta)$

$$
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[l(l+1)-\frac{\mathrm{m}_{l}^{2}}{\sin ^{2} \theta}\right] \Theta(\theta)=0
$$

\square Solutions are called associated Legendre polynomials $\mathrm{P}_{1}{ }^{m}(\cos \theta)$
\square Solutions exist only when $\mathrm{I}=0,1,2, \ldots$
\square Also require $m_{1}=-I,-I+1,-I+2, \ldots, 0, \ldots, I-2, I-1, I$
$\square E x . I=3, m_{1}=-3,-2,-1,0,1,2,3$
$R(r)$

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\left[\frac{2 \mathrm{~m} r^{2}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}^{2}}{\mathrm{r}}\right)-\frac{l(l+1)}{r^{2}}\right] R(r)=0
$$

\square Solutions are called associated Laguerre functions
\square Solutions exist only when $\mathrm{E}>0$ (continuous states) or $\mathrm{E}=-\frac{\mathrm{ke}^{2}}{2 \mathrm{a}_{0}}\left(\frac{1}{n^{2}}\right) ; a_{0}=\frac{\hbar^{2}}{m k e^{2}}=$ Bohr Radius (bound states)
$\square \mathrm{n}=1,2,3, \ldots, \infty$
\square Happens to be what Bohr predicted
\square Also require $\mathrm{I}=0,1,2, \ldots, \mathrm{n}-1$

Quantum numbers

\square 3D problem has 3 quantum numbers

- Each set of 3 q-\#'s specify a state
$\square \ln$ hydrogen the set is (n, l, m_{1})
-n goes from 0 to ∞, l is restricted by $\mathrm{n}, \mathrm{m}_{1}$ is restricted by 1
$\square E x$. If $n=2, l=0 / 1, m_{0}=0, m_{1}=-1 / 0 / 1$
- 1 possible state with $n=1:(1,0,0)$
- 4 possible states with $n=2:(2,0,0) \&(2,1,-1 / 0 / 1)$
- 9 possible states with $\mathrm{n}=3$
- N^{2} possible states with $\mathrm{n}=\mathrm{N}$

The wave functions

\square Denote m_{1} as m
$\square \Phi(\phi)=\Phi_{m}(\phi) \sim \exp (\operatorname{im} \phi)$
$\square \Theta(\theta)=\Theta_{1, m}(\theta) \sim P_{1}^{m}(\cos \theta)$
$\square R(r)=R_{n, 1}(r)$
$\square \mathrm{T}(\mathrm{t}) \sim \exp (-\mathrm{iEt} / \hbar)$

$$
\begin{aligned}
R_{10} & =2\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} e^{-Z r / a_{0}} \\
R_{21} & =\frac{1}{\sqrt{3}}\left(\frac{Z}{2 a_{0}}\right)^{\frac{3}{2}}\left(\frac{Z r}{a_{0}}\right) e^{-Z r / 2 a_{0}} \\
R_{20} & =2\left(\frac{Z}{2 a_{0}}\right)^{\frac{3}{2}}\left(1-\frac{Z r}{2 a_{0}}\right) e^{-Z r / 2 a_{0}} \\
R_{32} & =\frac{2 \sqrt{2}}{27 \sqrt{5}}\left(\frac{Z}{3 a_{0}}\right)^{\frac{3}{2}}\left(\frac{Z r}{a_{0}}\right)^{2} e^{-Z r / 3 a_{0}} \\
R_{31} & =\frac{4 \sqrt{2}}{3}\left(\frac{Z}{3 a_{0}}\right)^{\frac{3}{2}}\left(\frac{Z r}{a_{0}}\right)\left(1-\frac{Z r}{6 a_{0}}\right) e^{-Z r / 3 a_{0}} \\
R_{30} & =2\left(\frac{Z}{3 a_{0}}\right)^{\frac{3}{2}}\left(1-\frac{Z r}{3 a_{0}}+\frac{2(Z r)^{2}}{27 a_{0}^{2}}\right) e^{-Z r / 3 a_{0}}
\end{aligned}
$$

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \Phi}{d \phi^{2}}+\mathrm{m}_{l}^{2} \Phi=0 . \tag{1}\\
& \text { 0... } \\
& \frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[l(l+1)-\frac{\mathrm{m}_{l}^{2}}{\sin ^{2} \theta}\right] \Theta(\theta)=0 \ldots . . \text { (2) } \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\left[\frac{2 \mathrm{~m} r^{2}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{ke}}{\mathrm{r}}\right)-\frac{l(l+1)}{r^{2}}\right] R(r)=0 \ldots .(3)
\end{align*}
$$

$\ell \quad m_{\ell} \quad Y_{\ell m_{l}}(\theta, \phi)=\Theta_{\ell m_{l}}(\theta) \Phi_{m_{l}}(\phi)$
$0 \quad 0 \quad(1 / 4 \pi)^{1 / 2}$
$10(3 / 4 \pi)^{1 / 2} \cos \theta$
$1 \pm 1 \quad \mp(3 / 8 \pi)^{1 / 2} \sin \theta e^{ \pm i \phi}$
$20 \quad(5 / 16 \pi)^{1 / 2}\left(3 \cos ^{2} \theta-1\right)$
$2 \pm 1 \quad \mp(15 / 8 \pi)^{1 / 2} \sin \theta \cos \theta e^{ \pm i \phi}$
$2 \pm 2 \quad(15 / 32 \pi)^{1 / 2} \sin ^{2} \theta e^{+2 i \phi}$

Wave function for hydrogen

$\square \Psi(r, \theta, \phi, t)=R_{n,(r)}(r) \Theta_{\mathrm{l}, \mathrm{m}}(\theta) \Phi_{\mathrm{m}}(\phi) \mathrm{T}(\mathrm{t})$

$$
\begin{array}{rlrll}
R_{10} & =2\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} e^{-Z r / a_{0}} & & \ell & m_{\ell}
\end{array} Y_{\ell m_{l}}(\theta, \phi)=\Theta_{\ell m_{l}}(\theta) \Phi_{m_{l}}(\phi)
$$

\square We can look at for example the ground state

$$
\psi_{100}=R_{10}(r) Y_{0}^{0}(\theta, \phi) \quad\left|\psi_{100}\right|^{2}=\frac{Z^{3}}{\pi a_{0}^{3}} e^{-2 Z r / a_{0}}
$$

The ground state

$\square\left|\psi_{100}\right|^{2}=\frac{Z^{3}}{\pi a_{0}^{3}} e^{-2 Z r / a_{0}}$ is spherically symmetric
\square We can define the radial probability distribution

$$
P(r) d r=|\psi|^{2} 4 \pi r^{2} d r
$$

\square This is the probability the electron will be found at a distance $[r, r+d r]$ from the nucleus

All the $\mathrm{I}=\mathrm{m}=0$ states are spherically symmetric

The excited states

Orbitals

