PHYS 2D
 DISCUSSION SECTION

Topics

\square Uncertainty
\square Tunneling

Wave Packet Review

\square Particles are described by wave packets $\Psi(x, t)$
\square The shape of the wave packet determines the probability distribution of the particle
\square Particle can be found anywhere $|\Psi(x, t)|^{2} \neq 0$
\square A sharp spatial wave packet means it's very likely the particle will be found in a small region
\square A sharp spatial wave packet will correspond to a wide wave packet in momentum space
\square So the particle have a wide range of possible momenta

Uncertainty of Gaussian Wave Packet

\square Consider a Gaussian wave packet in space
$\psi(x)=\left(\frac{a^{2}}{\pi}\right)^{\frac{1}{4}} e^{\frac{-\left(x-x_{0}\right)^{2}}{2 a^{2}}}$

- A bell-shaped wave packet centered at x_{0}
- The width of the packet is proportional to a
\square Expectation value of the particle's position
$\langle x\rangle=\int_{-\infty}^{\infty} x|\psi(x)|^{2} d x=x_{0}$
\square Average of displacement squared $\left\langle\mathrm{x}^{2}\right\rangle=\int_{-\infty}^{\infty} \mathrm{x}^{2}|\psi(\mathrm{x})|^{2} \mathrm{dx}=\frac{\mathrm{a}^{2}}{2}+\mathrm{x}_{0}$
\square RMS displacement from average $\sigma_{x}^{2} \equiv\left\langle\mathrm{x}^{2}\right\rangle-\langle\mathrm{x}\rangle^{2}$

Meaning of Uncertainty Δx

\square Set $x_{0}=0$ without loss of generality
$\square\langle x\rangle=0,\left\langle x^{2}\right\rangle=a^{2} / 2$
$\square \sigma_{x}=a / 2^{1 / 2}$

- σ_{x} is the RMS displacement from average position
- A measurement will likely give an average result of x_{0}, with a range on order $\pm \sigma_{x}$
- Call σ_{x} the uncertainty Δx of the measurement of position x

Uncertainty in Momentum

\square What does this wave packet look like in k space? $\psi(x)=\left(\frac{a^{2}}{\pi}\right)^{\frac{1}{4}} e^{\frac{-\left(x-x_{0}\right)^{2}}{2 a^{2}}}$

- By Fourier transform, $a(k)=C \exp \left(-a^{2} k^{2} / 2\right)$
- Also Gaussian, with a $\rightarrow 1$ /a
- By analogy with spatial wave, $\Delta \mathrm{k}_{\mathrm{x}}=\sigma_{\mathrm{k}}=1 / 2^{1 / 2} \mathrm{a}$
- $p=\hbar k, \Delta p_{x}=\hbar / 2^{1 / 2} a$
$-\Delta p_{x} \Delta x=\left(\hbar / 2^{1 / 2} a\right)\left(a / 2^{1 / 2}\right)=\hbar / 2$
- Recover uncertainty principle!

Uncertainty in General

\square In general the wave packet is not Gaussian, but the idea for uncertainty is the same
\square Uncertainty is a measure of the width of the wave packet
\square It is also a measure of the size of the range of possible results from a measurement
\square Which is to say it's the RMS displacement from the average position
$\square(\Delta x)^{2}=\sigma_{x}^{2} \equiv\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$

The Tunneling Effect

\square What is tunneling?

- A particle with energy E hits a potential wall U
- Classically if $\mathrm{E}<\mathrm{U}$ the particle bounces back
- In QM a portion of the wave packet passes through

Scattering Picture

\square To find out what's going on, find the wave function for the particle
\square Solve Schrodinger's equation in 3 regions
\square Think of the particle as coming from the left
\square When it hits the barrier, part of it will reflect \& part of it will go through
\square We want to know how much goes through and how much is reflected

Form of the Wave Function

\square When $E>U$, we know the solution for $\psi(x)$ is $\sin (k x)$ \& $\cos (k x)$, or $\exp (i k x)$
\square A plane wave going to the right is $\exp [i(k x-\omega t)]$, while one going to the left is $\exp [i(-k x-\omega t)]$
$\square \ln$ barrier region $E<U$, the solution is $\exp (\pm \alpha x-i \omega t)$
\square Drop exp(-i ωt)
\square For $x>L$ we assume no incoming wave from the right

Solving for $\psi(x)$

\square Spatial wave functions in regions I, II, III
$\square \operatorname{In}$ region II, $\psi(x)=C \exp (-\alpha x)+\operatorname{Dexp}(\alpha x)$
\square Require $\psi \& d \psi / d x$ be continuous at boundaries $x=0 \& x=L$
\square Solve for the coefficients, 5 unknowns with 4 equations, 1 unknown represents overall factor

Tunneling Coefficients

\square Define $T=|F / A|^{2}, R=|B / A|^{2}$

\square When $E<U$, most of the wave is reflected
\square When $E>U$, most of the wave goes through, T oscillates below 1
$\square \mathrm{T}=1$ happens when reflected wave from $\mathrm{x}=0$ \& $\mathrm{x}=\mathrm{L}$ cancel

\square Questions?

