PHYS 2D PROBLEM SESSION

\square Quiz 3 is graded
\square Pick up quiz 3 today or next Tuesday
\square Regrade request: 1 week
6.1
\square Determine which wave functions are physical
\square Conditions:

- Continuous
- Single-valued
- Value is finite
\square Valid ones: b \& c

6.16

\square Electron in a box, $\mathrm{L}=0.3 \mathrm{~nm}(x=0$ to L$)$, find the probability P_{n} the particle is found within [0, 0.1 nm] for $n=1 \& n=100$
$\square \psi_{n}(x)=A \sin (n \pi x / L), A=(2 / L)^{1 / 2}$
$\square \mathrm{P}_{\mathrm{n}}=\int_{0}^{0.1}|\psi(\mathrm{x})|^{2} \mathrm{dx}=\frac{2}{\mathrm{~L}} \int_{0}^{0.11-\cos (2 \mathrm{n} \pi \mathrm{x} / \mathrm{L})} \mathrm{m}_{0} \mathrm{dx}=\frac{1}{\mathrm{~L}}\left[\mathrm{x}-\frac{\mathrm{L}}{2 \mathrm{n} \pi} \sin (2 \mathrm{n} \pi \mathrm{x} / \mathrm{I})\right]_{0}^{0.1}$
$=0.1 / \mathrm{L}-\left(\frac{\sin (0.2 \mathrm{n} \pi / \mathrm{L})}{2 \mathrm{n} \pi}-0\right)=1 / 3-\frac{\sin (2 \mathrm{n} \pi / 3)}{2 n \pi}$
$n=1, P_{n}=0.196 ; n=100, P_{n}=0.332 ; n=\infty, P_{n}=1 / 3$
\square Correspondence principle: we get classical result with large n
\square Classical: same probability everywhere, $\mathrm{P}=1 / 3$

6.23

\square Square well with $V(x<0)=\infty, V(0<x<L)=0$, $V(x>L)=U$, particle has energy E, find $\psi(x)$
\square Regions I, II, III for $x<0,0<x<L$, $x>L$
\square 1. Write out Schrodinger eq \& ψ for each region

- Region I: $\psi(x)=0$
- Region II: Free space $-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x)$
- Region III:

$$
\begin{aligned}
& \psi(x)=A \cos (k x)+B \sin (k x), E=\frac{\hbar^{2} k^{2}}{2 m} \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+U \psi(x)=E \psi(x), E-U<0
\end{aligned}
$$

$$
\psi(x)=C e^{k^{\prime} x}+D e^{-k^{\prime} x}, E-U=-\frac{\hbar^{2} k^{\prime 2}}{2 m}
$$

6.23

\square 2. Apply boundary conditions

- Wave function is continuous at $x=0$ \& $x=L$
- $d \psi / d x$ is continuous at $x=L$
- Wave function is finite at $x=\infty$
\square At $x=0: \psi(0)=\operatorname{Acos}(0)+\operatorname{Bsin}(0)=0$, so $A=0$
\square At $x=\infty: \psi(\infty)=C e^{k^{\prime} \infty}+D e^{-k k^{\prime} \infty}=C e^{k^{\prime} \infty}$ is finite, so $C=0$
At $x=L: \quad \psi(\mathrm{I})=B \sin (k L)=D e^{-k L^{\prime}}$

$$
\psi^{\prime}(\mathrm{I})=k \operatorname{kBos}(k I)=-k^{\prime} D e^{-k} L^{\prime} L
$$

\square Dividing, we get $\tan (k L)=-k / k$ '

6.23

$\square \tan (k L)=-k / k^{\prime}$
$\square E=\frac{\hbar^{2} \mathrm{k}^{2}}{2 m}, \mathrm{E}-\mathrm{U}=-\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}}$
$\cot ^{2}(k L)=(U-E) / E$
$\cot ^{2}(k L)+1=1 / \sin ^{2}(k L)$
$\square(k L)^{2} / \sin ^{2}(k L)>1$, so $(k L)^{2}[(U-E) / E+1]>1$
$\square(k L)^{2}[(U-E) / E+1]=(k L)^{2} U / E=2 L^{2} U / \hbar^{2}>1$
$\square 2 \mathrm{~mL}^{2} \mathrm{U} / \hbar^{2}>1$ to have a solution
\square No solution when $2 \mathrm{~mL}^{2} \mathrm{U} / \hbar^{2}<1$, or $U<\hbar^{2} / 2 \mathrm{~mL}^{2}$

6.24

\square Show that $\psi(x)=c x e^{-a x^{2}}$ is a solution to Schrodinger's
equation for quantum oscillator
$\square-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{\mathrm{dx}^{2}} \psi(\mathrm{x})+\frac{1}{2} \mathrm{~m} \omega^{2} \mathrm{x}^{2} \psi(\mathrm{x})=\mathrm{E} \psi(\mathrm{x})$
$\square \frac{d \psi}{d x}=-2 \alpha x \psi(x)+C e^{-\alpha x^{2}}, \frac{d^{2} \psi}{d x^{2}}=-2 \alpha x \frac{d \psi}{d x}-2 \alpha \psi(x)-(2 \alpha x) C e^{-\alpha x^{2}}=(2 \alpha x)^{2} \psi(x)-6 \alpha \psi(x)$
\square Equate $\mathrm{x}^{2} \psi(\mathrm{x})$ terms and $\psi(\mathrm{x})$ terms
$\square \alpha=\frac{m \omega}{2 \hbar}, E=\frac{3 \alpha \hbar^{2}}{m}=\frac{3}{2} \hbar \omega$
$\square \psi(x)$ is the $\mathrm{n}=1$ state
\square Normalization: $\left.1=\int_{-\infty}^{\pi / 1 /(x)}\right)^{2} d x=2 C^{2} \int_{0}^{x} \int_{0}^{2} e^{-2 a x^{2}} d x$
\square We can find C in terms of $\alpha=\frac{m \omega}{2 \hbar}\left(2 C^{2} \int_{0}^{\infty} x^{2} e^{-2 \alpha x^{2}} d x=2 C^{2} \frac{1}{4 \alpha} \sqrt{\frac{\pi}{2 \alpha}}\right)$

6.32

\square Find $\left.\langle x\rangle \&<x^{2}\right\rangle \& \Delta x$ for ground state $\psi(x)=C e^{-a x^{2}}$ of quantum oscillator
$\square \alpha=\frac{m \omega}{2 \hbar}, \quad C=\left(\frac{1}{\pi} \frac{m \omega}{\hbar}\right)^{1 / 4}$
$\square\langle x\rangle=\int_{-\infty}^{\infty} x|\psi(x)|^{2} d x=\int_{-\infty}^{\infty} x C^{2} e^{-2 \alpha x^{2}} d x=0$
$\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} x^{2}|\psi(x)|^{2} d x=\int_{-\infty}^{\infty} x^{2} C^{2} e^{-2 \alpha x^{2}} d x=2 C^{2} \int_{0}^{\infty} x^{2} e^{-2 \alpha x^{2}} d x=2 C^{2} \frac{1}{4 \alpha} \sqrt{\frac{\pi}{2 \alpha}}$
$(\Delta \mathbf{x})^{2}=\left\langle\mathbf{x}^{2}\right\rangle-\langle\mathbf{x}\rangle^{2}, \Delta \mathbf{x}=\left\langle\mathbf{x}^{2}\right\rangle^{1 / 2}$

