PHYS 2D
 DISCUSSION SECTION

\square Quiz 3 is graded
\square Pick up quiz 3 today, tomorrow, or next Tuesday
\square Regrade request: 1 week

Topics

\square Probability
\square Born interpretation
\square Normalization
\square Operators
$\square \mathrm{x}$ \& p operators
\square Schrodinger's equation
\square Free space wave function
\square Particle in a box \& Finite square well
\square Quantum oscillator

Probability

$\square 2$ possible outcomes for a measurement:

- Event 1 has probability p_{1} of happening, event 2 has p_{2}. When taking a measurement, either 1 happens or 2 happens, so $p_{1}+p_{2}=1$
- 1 measurement: has a chance p_{1} to find result 1 , chance p_{2} to find result 2
- 100 measurements: find result 1 100* p_{1} times, result 2 100* p_{2} times
- N measurements: result in $1 \mathrm{~Np}_{1}$ times, $2 \mathrm{~Np}_{2}$ times
$-N p_{1}+N p_{2}=N\left(p_{1}+p_{2}\right)=N$

Probability

$\square M$ possible outcomes for a measurement:

- A measurement has chance p_{x} to return result x, where x goes from 1 to M, and $\Sigma_{x} p_{x}=1$
\square If M is infinite:
- Consider for example $x=$ position of a particle
- x is now continuous (infinite values of x)
- If we assign each x a probability, sum over x blows up
- Define $p(x)$ so that a measurement has chance $p(x) d x$ of finding the particle in an interval $d x$ about x
- $p(x)$ is now a probability distribution

Probability

$\square \mathrm{P}(\mathrm{x}) \mathrm{dx}$ is the probability of finding the particle in a small interval $d x$ around x
\square If at each x a function f has value $f(x)$, then the average measured value of f after lots of measurements is $\overline{\mathrm{I}}=\int_{\mathrm{F} P(x)} \mathrm{dx}$
\square Discrete example: Dice

- $x=1$ to 6
- $p_{x}=1 / 6$
- $f_{x}=x$
- Average measured value of $x=\Sigma_{x} f_{x} p_{x}=3.5$

Wave function Ψ

\square Wave function $\Psi(x)$ is used to describe a particle

- It contains all the information about that particle
- It is a complete description
- In principle, if we know $\Psi(x)$, we can deduce any physical quantity of the particle we want to know

Born interpretation

\square Born interpretation: (the physical meaning of the wave function $\Psi(x)$)

- $|\Psi(x)|^{2}$ is a probability distribution, which means a measurement (of position x) has a chance $|\Psi(x)|$ ${ }^{2} \mathrm{dx}$ of returning a value in the interval dx about x , or $\quad P(x) d x=|\Psi(x, t)|^{2} d x$
- When measuring the position of the particle, the returned value x, which is the position of the particle, can be anywhere from $-\infty$ to ∞ as long as $|\Psi(x)|^{2} \neq 0$, but the probability for each x is different

Normalization

\square If our $\Psi(\mathrm{x})$ describes 1 particle, then the probability of finding the particle at each x must add up to 1
\square For discrete $x_{, ~} \Sigma_{x} p_{x}=1$
\square For continuous $\mathbf{x}, \int_{-\infty}|\Psi(x, t)|^{2} d x=1 \quad\left(P(x) d x=|\Psi(x, t)|^{2} d x\right)$
\square This is the normalization condition, arising from the probabilistic nature of wave functions

Operators

\square Wave function contains all physical quantities

- Position, momentum, energy, etc.
\square To extract these information (observables), need to define operators for the corresponding measurable physical quantity f
\square Expectation value $\overline{\bar{x}}=$ average value of f after large number of measurements (of f)
\square The operator for f, \hat{x} is defined so that the expectation value is $\overline{\mathrm{E}}=\int_{-\infty}^{\infty} \bar{\Phi}^{*}(x) \hat{\mathrm{E}} \overline{\underline{x}}(x) d x$
$\square \hat{\mathrm{x}}$ can be a number or a differential operator

x \& p operators

\square For example, if f is the position x

- By definition, $\bar{x}=\int_{-\infty}^{\infty} \bar{\Phi}^{*}(x) \hat{x} \underline{I}(x) d x$
- But $^{\bar{x}}=\int_{-\infty}^{\infty} x P(x) d x=\int_{-\infty}^{\infty} x|\bar{I}(x)|^{2} d x$

$$
=\int_{-\infty}^{\infty} x \Phi^{*}(x) \Phi(x) d x=\int_{-\infty}^{\infty} \Phi^{*}(x) x \Phi(x) d x
$$

- So $\hat{x}=x$
\square For momentum p , $\hat{\mathrm{p}}$ is a differential operator
- It can be derived: $\hat{\mathrm{p}}=\frac{\hbar}{\frac{\hbar}{i n}} \frac{d}{d x}$
- So $\bar{p}=\int_{-\infty}^{\infty} \bar{\Phi}^{*}(x) \hat{p} \underline{\underline{x}}(x) d x=\int_{-\infty}^{\infty} \bar{\Phi}^{*}(x) \frac{\hbar}{\frac{\hbar}{i}} \frac{d}{d x} \underline{\underline{T}}(x) d x$
- $\hat{p}=\frac{\hbar}{i} \frac{d}{d x}$ acts on the wave function $\Psi(x)$ to the right

Schrodinger's equation

\square Relates the wave function of a particle to the environment $(U(x))$ of the particle

$$
\dot{\operatorname{in}} \frac{\partial}{\partial t} \underline{x}(x, t)=\hat{H} \underline{X}(x, t)
$$

\square The equation that determines the wave function
\square Total energy $E=p^{2} / 2 m+U(x)$
\square Convert p to $\hat{\mathrm{p}}$ and x to $\hat{\mathrm{x}}$ to get $\hat{\mathrm{B}}$
$\square \hat{\mathrm{H}}=\frac{\hat{\mathrm{p}}^{2}}{2 \mathrm{~m}}+\mathrm{U}(\hat{\mathrm{x}})=\frac{\left(\frac{\frac{\hbar}{i}}{\mathrm{i}} \frac{\mathrm{d}}{\mathrm{dx}}\right)^{2}}{2 \mathrm{~m}}+\mathrm{U}(\hat{\mathrm{x}})=-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2}}{\mathrm{dx}}{ }^{2}+U(\hat{\mathrm{x}})$

Schrodinger's equation

\square Time-dependent Schrodinger's equation:

$$
\text { in } \frac{\partial}{\partial t} \underline{\underline{T}}(x, t)=\hat{H} \underline{\underline{x}}(x, t)
$$

where $\hat{\mathrm{n}}$ is the total energy operator (Hamiltonian)

- If we assume that $\Psi(x, t)$ can be separated

$$
\underline{\Psi}(x, t)=\psi(x) \phi(t)
$$

- Then we have the time-independent Schrodinger's equation $\hat{\mathrm{H}} \psi(\mathrm{x})=\mathrm{E} \psi(\mathrm{x})$, where E is the total energy
- Also in $\frac{\partial}{\partial t} \phi(t)=E \phi(t)$

Free space wave function

\square Putting Schrodinger's equation to use
\square Free space: $U(x)=0$

$$
\begin{array}{ll}
\hat{H} \psi(x)=E \psi(x) & \frac{d^{2}}{d x^{2}} \cos (x)=-\cos (x) \\
\text { in } \frac{\partial}{\partial t} \phi(t)=E \phi(t) & \frac{d^{2}}{d x^{2}} \sin (x)=-\sin (x) \\
\hat{H}=\frac{\hat{p}^{2}}{2 m}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} & e^{\dot{i x}}=\cos (x)+\dot{i} \sin (x)
\end{array}
$$

So, $\psi(x)=A e^{ \pm i k x}, E=\frac{\hbar^{2} k^{2}}{2 m}$

$$
\phi(t)=B e^{-i \omega t}, \quad E=\hbar \omega
$$

$$
\Phi(x, t)=C e^{\dot{I}(\pm k x-\omega t)}=C[\cos (\pm k x-\omega t)+\dot{i} \sin (\pm k x-\omega t)]
$$

Particle in a box

\square Not so trivial application of Schrodinger's equation
$\square \phi(t)=B e^{- \text {iet }}$ doesn't affect observables
\square 1-D box, particle is restricted so $\times \in[0, I]$
\square To prevent particle from moving beyond $[0, \mathrm{I}$, we let $V=\infty$ outside the box
\square When $V=\infty, \Psi(x)=0$, the wall is infinitely high
\square To find $\psi(x)$ in region II, consider the timeindependent Schrodinger's equation and require $\psi(x)$ be continuous $(\psi(0)=\psi(L)=0)$

Particle in a box

$\square \psi(x)=A \sin k x=A \sin [(n \pi / L) x]$
$\square E=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L}$
$\square \mathrm{n}=1,2,3, \ldots$

\square Integer n (quantization) comes from boundary conditions

Finite square well

\square The potential outside II is now $\mathrm{V}=\mathrm{U}$, not ∞
\square Wave function similar to particle in a box
\square Significant difference at the boundary ($x=0$ or L)
\square Wave function is non-zero outside II, for a small distance (penetration depth)
\square To find $\psi(x)$, require ψ and $d \psi / d x$ be continuous at $x=0$ \& $x=L$

Quantum oscillator

\square Classical oscillator: $E=p^{2} / 2 m+U(x), U(x)=m \omega^{2} x^{2} / 2$
\square Ex. Spring
\square Quantum version: $-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+\frac{\pi \mu^{2} x^{2}}{2} \psi(x)=E \psi(x)$
$\square E=(n+1 / 2) \hbar \omega, n=0,1,2, \ldots$
$\square \mathrm{n}=0$ correspond to zero classical amplitude, but $\mathrm{E}=\hbar \omega / 2 \neq 0$
\square Can model small oscillations around stable equilibrium points

\square Questions?

