PHYS 2D PROBLEM SESSION

2012/5/03

- Quiz 2 regrade request: before quiz 3
- Quiz 2 still being graded
- Solution has lots of typesetting errors
- Number is usually correct
- Let Dr. Sutterly or me know if you find serious/ conceptual errors

4.3, 4.7, 4.8

- □ Do them!
- □ Questions?

□ Lyman emission spectra: hydrogen goes from state $n_i = n$ to $n_f = 1$, $n_i = 2$, 3, 4, ..., ∞

$$\Box E_{photon} = hc/\lambda = E_i - E_f$$

 $\Box 1/\lambda = R(1/n_f^2 - 1/n_i^2) = R(1/1^2 - 1/n^2)$

- n_i>n_f=1, A series of emission lines corresponds to a set of n_i
- Different n_f give different series
- □ Lyman: $n_f = 1$, Balmer: $n_f = 2$, Paschen: $n_f = 3$

- □ Radius of the 1st, 2nd, 3rd Bohr orbit of hydrogen
- $r=n^{2}\hbar^{2}/m_{e}ke^{2}=n^{2}a_{0}=0.0529n^{2}$ nm
- ♦ r₁=0.0529 nm
- ♦ r₂=0.2116 nm
- ♦ r₃=0.4761 nm
- Speed of electron in these orbits
- $K = m_e v^2/2 = -E = 13.6/n^2 eV$, $v = (2*13.6eV/m_e)^{1/2}/n$
- $v_1 = 2.19 \times 10^6 \text{ m/s} = 0.00726 \text{ c}$
- $v_2 = 0.00364c = v_1/2, v_3 = v_1/3$

□ v<<c

- □ Energy level of He+ ion
- Same as hydrogen, except Z=2
- \Box E=-13.6*Z²/n² eV
- Everything is 4 times that of hydrogen

- □ Hydrogen in state n=1
- □ r=0.0529 nm
- \square p=m_ev, v calculated in 4.14
- \Box L=m_evr=nħ=ħ
- \Box K=m_ev²/2
- \Box U=-ke²/r
- □ Circular motion, centripetal force $m_e v^2/r = ke^2/r^2$
- □ U=-2K
- □ E=U+K=-K=-13.6 eV

- Mass of proton is not infinite
- Must consider the motion of proton
- \square Done by simply using reduced mass μ instead of m_e
- \square µ=m_eM/(m_e+M), M: mass of nucleus
- $\Box a_0 \sim 1/m_e$, E~1/a₀, so E'=E*µ/m_e
- $\Box \lambda \sim 1/E$, $\lambda' = \lambda m_e/\mu$
- □ Using m_e: 656.1469 nm
- Hydrogen: 656.4691 nm
- Deuterium: 656.2925 nm
- Tritium: 656.2325 nm