PHYS 2D PROBLEM SESSION

\square Quiz 2 regrade request: before quiz 3
\square Quiz 2 still being graded
\square Solution has lots of typesetting errors
\square Number is usually correct
\square Let Dr. Sutterly or me know if you find serious/ conceptual errors

$4.3,4.7,4.8$

\square Do them!
\square Questions?

4.13

\square Lyman emission spectra: hydrogen goes from state $n_{i}=n$ to $n_{f}=1, n_{i}=2,3,4, \ldots, \infty$
$\square \mathrm{E}_{\text {photon }}=\mathrm{hc} / \lambda=\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{f}}$
$\square 1 / \lambda=R\left(1 / n_{f}^{2}-1 / n_{i}^{2}\right)=R\left(1 / 1^{2}-1 / n^{2}\right)$

$\square n_{i}>n_{f}=1$, A series of emission lines corresponds to a set of n_{i}
\square Different n_{f} give different series
\square Lyman: $n_{f}=1$, Balmer: $n_{f}=2$, Paschen: $n_{f}=3$

4.14

\square Radius of the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ Bohr orbit of hydrogen
$r=n^{2} \hbar^{2} / m_{e} k e^{2}=n^{2} a_{0}=0.0529 n^{2} n m$
$-r_{1}=0.0529 \mathrm{~nm}$

- $r_{2}=0.2116 \mathrm{~nm}$
- $r_{3}=0.4761 \mathrm{~nm}$
\square Speed of electron in these orbits
$-K=m_{e} v^{2} / 2=-E=13.6 / n^{2} e V, v=\left(2 * 13.6 e V / m_{e}\right)^{1 / 2} / n$
- $v_{1}=2.19^{*} 10^{6} \mathrm{~m} / \mathrm{s}=0.00726 \mathrm{c}$
- $v_{2}=0.00364 c=v_{1} / 2, v_{3}=v_{1} / 3$
$\square \mathrm{v} \ll \mathrm{c}$

4.15

\square Energy level of $\mathrm{He}+$ ion
\square Same as hydrogen, except $Z=2$
$\square \mathrm{E}=-13.6^{*} \mathrm{Z}^{2} / \mathrm{n}^{2} \mathrm{eV}$
\square Everything is 4 times that of hydrogen

4.23

\square Hydrogen in state $\mathrm{n}=1$
$\mathrm{r}=0.0529 \mathrm{~nm}$
$\square \mathrm{p}=\mathrm{m}_{\mathrm{e}} \mathrm{v}, \mathrm{v}$ calculated in 4.14
$\square \mathrm{L}=\mathrm{m}_{\mathrm{e}} \mathrm{vr}=\mathrm{n} \hbar=\hbar$
$\square \mathrm{K}=\mathrm{m}_{\mathrm{e}} \mathrm{v}^{2} / 2$
$\square \mathrm{U}=-\mathrm{ke}^{2} / \mathrm{r}$
\square Circular motion, centripetal force $m_{e} v^{2} / r=k e^{2} / r^{2}$
$\square \mathrm{U}=-2 \mathrm{~K}$
$\square \mathrm{E}=\mathrm{U}+\mathrm{K}=-\mathrm{K}=-13.6 \mathrm{eV}$
\square Mass of proton is not infinite
\square Must consider the motion of proton
\square Done by simply using reduced mass μ instead of m_{e}
$\square \mu=m_{e} M /\left(m_{e}+M\right), M$: mass of nucleus
$\square a_{0} \sim 1 / m_{e}, E \sim 1 / a_{0}$, so $E^{\prime}=E^{*} \mu / m_{e}$
$\square \lambda \sim 1 / E, \lambda^{\prime}=\lambda^{*} m_{e} / \mu$
\square Using $m_{e}: 656.1469 \mathrm{~nm}$
\square Hydrogen: 656.4691 nm
\square Deuterium: 656.2925 nm
\square Tritium: 656.2325 nm

