PHYS 2D
 DISCUSSION SECTION

\square Email me topics/questions you'd like to discuss
\square Problem section tomorrow 8pm Pepper Canyon 109
\square Specific problems for problem section?
\square Quiz on Friday

Topics for Today

\square Simultaneity
\square Time dilation \& Length contraction
\square Proper time/length
\square Lorentz Transformation
\square Twin Paradox
\square Relativistic Energy

Simultaneity

\square From rest frame PoV, light signal from B hits O' first

\square From moving frame PoV, light signals from A^{\prime} \& B^{\prime} both have velocity $\mathrm{c} \&$ traverse $1 / 2$ the compartment
\square Lightning must have hit B' first

Simultaneity

\square Discrepancy arises from constancy of c
\square Clocks at A' \& B' are not synchronized

$$
\underline{t^{\prime}}=\gamma\left(t-v x / c^{2}\right)
$$

\square Define $t_{B}{ }^{\prime}=t_{B}=0, x_{B}{ }^{\prime}=x_{B}=0$, then $t_{A}=t_{B}=0$
$\square t_{A}{ }^{\prime}=\gamma\left(t_{A}-v x_{A} / c^{2}\right)=-\gamma v x_{A} / c^{2}>0\left(x_{A}<0\right)$
$\square t_{A}{ }^{\prime}>0, t_{b}{ }^{\prime}=0$, A happened later
\square Simultaneity is meaningless for different frames

Time Dilation

(a)

(b)
$\square \Delta t=\gamma \Delta t^{\prime}, \Delta t^{\prime}$ is the proper time (2 measurement events happen at the same place in K^{\prime} frame)
$\square \Delta t>\Delta t^{\prime}$ always, where Δt is measured in a moving frame K (2 events happen at different places in K)

Length Contraction

\square Derivation: slide 7, lecture 4
\square Proper length $\Delta L^{\prime}=\gamma \Delta L$, where K^{\prime} is the object's rest frame
\square Proper time is measured in the object's rest frame
\square Proper length is also measured in the object's rest frame
$\square \Delta \mathrm{L}^{\prime}>\Delta \mathrm{L}$, object appears shorter in moving frame K

Lorentz Transformation

$\underline{\text { Lorentz Transformation }}$	$\frac{\text { Inverse Lorentz }}{\text { Transformation }}$
$\underline{x^{\prime}=\gamma(x-v t)}$	$\underline{x=\gamma\left(x^{\prime}+v t^{\prime}\right)}$
$\underline{y^{\prime}=y}$	$\underline{y=y^{\prime}}$
$\underline{z^{\prime}=z}$	$\underline{z=z^{\prime}}$
$\underline{t^{\prime}=\gamma\left(t-v x / c^{2}\right)}$	$\underline{t=\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right)}$

\square Complete description of spacetime coordinate transformation
\square Can rederive time dilation \& length contraction

Lorentz Transformation

Lorentz Transformation
$\boldsymbol{x}^{\prime}=\gamma(x-v t)$
$y^{\prime}=\mathrm{y}$
$\underline{z}^{\prime}=z$
$\mathrm{t}^{\prime}=\gamma\left(\mathrm{t}-\mathrm{vx} / \mathrm{c}^{2}\right)$

Inverse Lorentz Transformation

```
x = \gamma ( }\mp@subsup{x}{}{\prime}+v\mp@subsup{t}{}{\prime}
```

$y=y^{\prime}$
$\underline{z}=z^{\prime}$
$t=\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right)$
\square Suppose K^{\prime} is the rest frame
Time dilation:
\square To get the proper time, events are measured at the same place, which happens in the rest frame K^{\prime}
\square So we have $\Delta x^{\prime}=0$
\square Plug into inverse LT: $\Delta t=\gamma \Delta t^{\prime}(\Delta t$ is larger $)$

Lorentz Transformation

Lorentz Transformation
$\underline{x^{\prime}=\gamma(x-v t)}$
$\underline{y^{\prime}=y}$
$\underline{z^{\prime}=z}$
$\underline{t^{\prime}=\gamma\left(t-v x / c^{2}\right)}$

```
Inverse Lorentz
Transformation
x = \gamma ( }\mp@subsup{x}{}{\prime}+v\mp@subsup{t}{}{\prime}
y= 名
z= z'
t = \gamma( (t'+v ', i}\mp@subsup{c}{}{2}
```

\square Suppose K' is the rest frame
Length Contraction:
\square Length measurement: must measure both ends of the object at the same time
\square Want to find length in moving frame K
\square So we must have $\Delta t=0$ (same time in K), plug into LT
$\square \Delta x^{\prime}=\gamma \Delta x(\Delta x$ is smaller $)$

Twin Paradox

\square Twins Pam \& Jim, Jim is on Earth, Pam is on rocket with $v=0.6 c$, traveling 3 light-years (Earth PoV)

\square Paradox: Jim sees Pam moving while he's at rest, Pam sees Jim moving while she's at rest
\square Jim thinks Pam's clock ticks slower, Pam thinks Jim's clock tick slower

Twin Paradox

\square Solution: Pam switched between 2 inertial frames, so the problem is not symmetrical
\square http://en.wikipedia.org/wiki/Twin_paradox
\square At the turning point, "The traveling twin reckons that there has been a jump discontinuity in the age of the resting twin.", due to the change of frames
\square Find your own answer that convinces you

Energy \& Momentum

- Define $\overrightarrow{\mathbf{p}} \equiv \frac{m \overrightarrow{\mathbf{u}}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}=\gamma m \overrightarrow{\mathbf{u}}$Newton's $2^{\text {nd }}$ law $\overrightarrow{\mathbf{F}}=d \overrightarrow{\mathbf{p}} / d t$

$$
\begin{aligned}
K & =\int_{x_{1}}^{x_{2}} \frac{m \frac{d u}{d t}}{\left(1-\frac{u^{2}}{c^{2}}\right)^{3 / 2}} d x x d x=u d t \\
& =\int_{t_{1}}^{t_{2}} \frac{m \frac{d u}{d t}}{\left(1-\frac{u^{2}}{c^{2}}\right)^{3 / 2}} u d t \quad d u=\frac{d u}{d t} d t \\
& =\int_{0}^{u} \frac{m u d u}{\left(1-\frac{u^{2}}{c^{2}}\right)^{3 / 2}} \quad y=1-\frac{u^{2}}{c^{2}}, d y=-2 \frac{u}{c^{2}} d u \\
& =\int_{1}^{1-\frac{u^{2}}{c^{2}} \frac{m\left(\frac{c^{2}}{-2}\right) d y}{y^{3 / 2}}=\left[y^{-\frac{1}{2}} m c^{2}\right]_{1}^{1-\frac{u^{2}}{c^{2}}}} \\
& =\gamma m c^{2}-m c^{2}
\end{aligned}
$$

Energy

$\mathrm{K}=\gamma \mathrm{mc}^{2}-\mathrm{mc}^{2}$$\square$ Define total energy $\mathrm{E}=\mathrm{K}+\mathrm{mc}^{2}$, kinetic energy+rest mass
\square Mass \& energy can be interexchanged
$\square E=\gamma \mathrm{mc}^{2}$
$\mathrm{p}=\mathrm{Ymu}, \quad(\mathrm{pc})^{2}+\left(\mathrm{mc}^{2}\right)^{2}=\frac{\mathrm{m}^{2} \mathrm{u}^{2}}{1-\frac{\mathrm{u}^{2}}{\mathrm{c}^{2}}} \mathrm{c}^{2}+\mathrm{m}^{2} \mathrm{c}^{4}$

$$
=\frac{m^{2} u^{2}}{1-\frac{u^{2}}{c^{2}}} c^{2}+\frac{m^{2} c^{2}-m^{2} u^{2}}{1-\frac{u^{2}}{c^{2}}} c^{2}=\frac{m^{2} c^{4}}{1-\frac{u^{2}}{c^{2}}}=\left(\gamma m c^{2}\right)=E^{2}
$$

$\square \quad \mathrm{E}^{2}=(\mathrm{pc})^{2}+\left(\mathrm{mc}^{2}\right)^{2}$

Energy Conservation

\square Total relativistic energy E is conserved

\square Can be used in particle physics problems
\square Questions?

