

PHYS 2D DISCUSSION SECTION

Email me topics/questions you'd like to discuss

Problem section tomorrow 8pm Pepper Canyon 109

Specific problems for problem section?

Quiz on Friday

Topics for Today

- Simultaneity
- Time dilation & Length contraction
- Proper time/length
- Lorentz Transformation
- Twin Paradox
- Relativistic Energy

Simultaneity

□ From rest frame PoV, light signal from B hits O' first

From moving frame PoV, light signals from A' & B' both have velocity c & traverse 1/2 the compartment
Lightning must have hit B' first

Simultaneity

Discrepancy arises from constancy of c

Clocks at A' & B' are not synchronized

- \Box Define $t_B'=t_B=0$, $x_B'=x_B=0$, then $t_A=t_{B=0}$
- $\Box t_{A}' = \gamma(t_{A} v_{XA}/c^{2}) = -\gamma v_{XA}/c^{2} > 0 \ (x_{A} < 0)$
- \Box t_A'>0, t_B'=0, A happened later
- Simultaneity is meaningless for different frames

Time Dilation

- Δt=γΔt', Δt' is the proper time (2 measurement events happen at the same place in K' frame)
- Δt>Δt' always, where Δt is measured in a moving frame K (2 events happen at different places in K)

Length Contraction

- Derivation: slide 7, lecture 4
- Proper length ΔL'=γΔL, where K' is the object's rest frame
- Proper time is measured in the object's rest frame
- Proper length is also measured in the object's rest frame
- $\Box \Delta L' > \Delta L$, object appears shorter in moving frame K

Lorentz Transformation

Lorentz Transformation	Inverse Lorentz Transformation
$\underline{x'} = \gamma (x - v t)$	
$\underline{\mathbf{y}}' = \underline{\mathbf{y}}$	$\underline{\mathbf{x}} = \gamma \left(\mathbf{x}' + \mathbf{v} \mathbf{t}' \right)$
<u>z' = z</u>	$\mathbf{y} = \mathbf{y}'$
$t' = \gamma (t - v x/c^2)$	z = z'
	$t = \gamma (t' + v x' c^2)$

- Complete description of spacetime coordinate transformation
- Can rederive time dilation & length contraction

Lorentz Transformation

Lorentz Transformation	Inverse Lorentz Transformation
$\underline{x'} = \gamma (x - v t)$	
$\mathbf{y}' = \mathbf{y}$	$\mathbf{x} = \gamma (\mathbf{x}' + \mathbf{v} t')$
<u>z' = z</u>	$\mathbf{y} = \mathbf{y}'$
$\underline{t'} = \gamma (t - v x/c^2)$	z = z'
	$t = v (t' + v x' c^2)$

Suppose K' is the rest frame

Time dilation:

- To get the proper time, events are measured at the same place, which happens in the rest frame K'
- \square So we have $\Delta x'=0$
- \Box Plug into inverse LT: $\Delta t = \gamma \Delta t'$ (Δt is larger)

Lorentz Transformation

Lorentz Transformation	Inverse Lorentz Transformation
$\underline{x'} = \gamma (x - v t)$	
$\underline{\mathbf{y}}' = \underline{\mathbf{y}}$	$\underline{x} = \gamma (x' + v t')$
$\underline{z'} = \underline{z}$	<u>y = y'</u>
$t' = \gamma (t - v x/c^2)$	z = z'
	$t = \gamma (t' + v x'/c^2)$

Suppose K' is the rest frame Length Contraction:

- Length measurement: must measure both ends of the object at the same time
- Want to find length in moving frame K
- \square So we must have $\Delta t=0$ (same time in K), plug into LT
- $\Box \Delta x' = \gamma \Delta x$ (Δx is smaller)

Twin Paradox

Twins Pam & Jim, Jim is on Earth, Pam is on rocket with v=0.6c, traveling 3 light-years (Earth PoV)

- Paradox: Jim sees Pam moving while he's at rest, Pam sees Jim moving while she's at rest
- Jim thinks Pam's clock ticks slower, Pam thinks Jim's clock tick slower

Twin Paradox

- Solution: Pam switched between 2 inertial frames, so the problem is not symmetrical
- http://en.wikipedia.org/wiki/Twin_paradox
- At the turning point, "The traveling twin reckons that there has been a jump discontinuity in the age of the resting twin.", due to the change of frames
- □ Find your own answer that convinces you

Energy & Momentum

 $\Box \text{ Define } \vec{\mathbf{p}} \equiv \frac{m\mathbf{u}}{\sqrt{1 - \frac{u^2}{c^2}}} = \gamma m \vec{\mathbf{u}}$ Newton's 2nd law $\vec{F} = d\vec{p}/dt$ $F = \frac{dp}{dt} = \frac{d}{dt} \left\{ \frac{mv}{\left[1 - (v/c)^2\right]^{1/2}} \right\}$ $K = \int_{x_1}^{x_2} \frac{m \frac{du}{dt}}{\left(1 - \frac{u^2}{2}\right)^{3/2}} \, dx \quad dx = udt \qquad F = \frac{dp}{dt} = \frac{m}{\left[1 - \left(\frac{v^2}{c^2}\right)\right]^{3/2}} \left(\frac{dv}{dt}\right)$ $= \int_{t_1}^{t_2} \frac{m \frac{du}{dt}}{\left(1 - \frac{u^2}{dt}\right)^{3/2}} u dt du = \frac{du}{dt} dt$ $= \int_{0}^{u} \frac{m u \, du}{\left(1 - \frac{u^{2}}{c}\right)^{3/2}} \quad y = 1 - \frac{u^{2}}{c^{2}}, \ dy = -2 \frac{u}{c^{2}} \, du$ $= \int_{1}^{1-\frac{u^2}{c^2}} \frac{m\left(\frac{c^2}{-2}\right) dy}{\frac{1-\frac{u^2}{c^2}}{c^2}} = \left[y^{-\frac{1}{2}} mc^2\right]_{1}^{1-\frac{u^2}{c^2}}$ $= \chi mc^2 - mc^2$

Energy

- $K = \gamma m a^2 m a^2$
- Define total energy E=K+mc², kinetic energy+rest mass
- Mass & energy can be interexchanged
- $\Box E = \gamma mc^{2}$ $\Box p = \gamma mu, \quad (pc)^{2} + (mc^{2})^{2} = \frac{m^{2} u^{2}}{1 \frac{u^{2}}{c^{2}}} c^{2} + m^{2} c^{4}$ $= \frac{m^{2} u^{2}}{1 \frac{u^{2}}{c^{2}}} c^{2} + \frac{m^{2} c^{2} m^{2} u^{2}}{1 \frac{u^{2}}{c^{2}}} c^{2} = \frac{m^{2} c^{4}}{1 \frac{u^{2}}{c^{2}}} = (\gamma mc^{2}) = E^{2}$ $\Box E^{2} = (pc)^{2} + (mc^{2})^{2}$

Energy Conservation

□ Total relativistic energy E is conserved □ $\sum_{i} E_{i}^{\text{before}} = \sum_{i} E_{i}^{\text{after}} \& E^{2} = (pc)^{2} + (mc^{2})^{2}$

Can be used in particle physics problems

