Weighted Averages Simple Harmonic Motion and Damping

Lecture # 6 Physics 2BL Spring 2012

Outline

- Weighted averages (Chapter 7, Taylor)
- Experiment 3 intro
- Physics of damping and SHM
- Experiment 3 objectives
- Register clickers
 iclicker.com/registration

Schedule

Meeting	Experiment				
1 (Apr 2-6)	None (start Taylor)				
2 (Apr 9-13)	1				
3 (Apr 16-20)	1				
4 (Apr 23-27)	2 2 2				
5 (Apr 30-May4)					
6 (May 7-11)	3				
7 (May 14-18)	3				
8 (May 21-25)	4				
9 (May 28-June 1)	4				
10 (June 4-8)	FINAL				

Weighted averages (Chapter 7)

We can use maximum Likelihood (χ^2) to average measurements with <u>different</u> errors.

$$\chi^2 = \sum_{i=1}^n \left(\frac{x_i - X}{\sigma_i}\right)^2$$

We derived the result that:

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

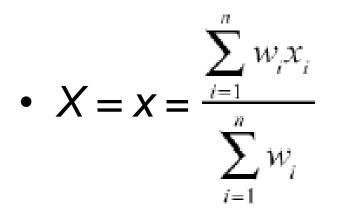
Using error propagation, we can determine the error on the weighted mean: 1

$$\sigma_{\overline{x}} = \frac{1}{\sqrt{\sum_{i=1}^{n} w_i}}$$

$$\frac{\partial \chi^2}{\partial X} = 0 = -2\sum_{i=1}^n \frac{x_i - X}{\sigma_i^2}$$
$$\sum_{i=1}^n \frac{x_i}{\sigma_i^2} - X\sum_{i=1}^n \frac{1}{\sigma_i^2} = 0$$
$$w_i \equiv \frac{1}{\sigma_i^2}$$
$$\sum_{i=1}^n w_i x_i = X\sum_{i=1}^n w_i$$
$$X = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

What does this give in the limit where all errors are equal?

Weighted averages



where
$$W_i = \frac{1}{\overline{\sigma_i}^2}$$

•
$$\sigma_{wav} = \frac{1}{\sqrt{\sum_{i=1}^{n} w_i}}$$

Example: Weighted Average

Suppose 2 students measure the radius of Neptune.

- Student A gets r=80 Mm with an error of 10 Mm and
- Student B gets r=60 Mm with an error of 3 Mm

What is the best estimate of the true radius?

$$\overline{r} = \frac{w_A r_A + w_B r_B}{w_A + w_B} = \frac{\frac{1}{100} 80 + \frac{1}{9} 60}{\frac{1}{100} + \frac{1}{9}} = 61.65 \text{ Mm}$$

What does this tell us about the importance of error estimates?

Clicker Question 9

Two measurements of the speed of sound give the answers:

 $u_A = (332 \pm 1) \text{ m/s and } u_B = (339 \pm 3) \text{ m/s.}$

What is the random chance of getting two results that show

this difference?

(A) 2 %
(B) 3 %
(C) 4%
(D) 8 %
(E) 40%

0	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17
0.1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07
0.2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82
0.3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35
0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59
0.5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48
0.6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98
0.7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05
0.8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65
0.9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78
1.0	68.27	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43
1.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60
1.2	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29
1.3	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.55
1.4	83.85	84.15	84.44	84.73	85.01	85.29	85.57	85.84	86.11	86.38
1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.82
1.6	89.04	89.26	89.48	89.69	89.90	90.11	90.31	90.51	90.70	90.90
1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65
1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.12
1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34
2.0	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.34
2.1	96.43	96.51	96.60	96.68	96.76	96.84	96.92	97.00	97.07	97.15
2.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.80

a) To check if the two measurements are consistent, we compute: $q = u_A - u_B = 339 - 332 = 7 \text{ m/s}$

and: $\sigma_{q} = \sqrt{\sigma_{uA}^{2} + \sigma_{uB}^{2}} = 3.16 \text{ m/s}$

so that:
$$t = \frac{q}{\sigma_q} = \frac{339 - 332}{3.16} = 2.21$$

From Table A we get that 2.21 sigma corresponds to: 97.21% Therefore the probability to get a worse result is 1-97% ~3%.

Clicker Question 10

Two measurements of the speed of sound give the answers: $u_A = (332 \pm 1) \text{ m/s}$ and $u_B = (339 \pm 3) \text{ m/s}$. What is the best estimate (weighted mean)?

(A)
$$336.5 \pm 2$$
 m/s
(B) 336 ± 2 m/s
(C) 336.5 ± 0.9 m/s
(D) 332.7 ± 0.9 m/s
(E) 333 ± 2 m/s

b) Best estimate is the weighted mean:

$$\overline{u} = \frac{w_A u_A + w_B u_B}{w_A + w_B} = \frac{\frac{1}{1} 332 + \frac{1}{9} 339}{\frac{1}{1} + \frac{1}{9}} = 332.7 \text{ m/s}$$
$$\sigma_{\overline{u}} = \frac{1}{\sqrt{1/w_A + 1/w_B}} = \frac{1}{\sqrt{1/1 + 1/9}} = 0.9 \text{ m/s}$$

The Four Experiments

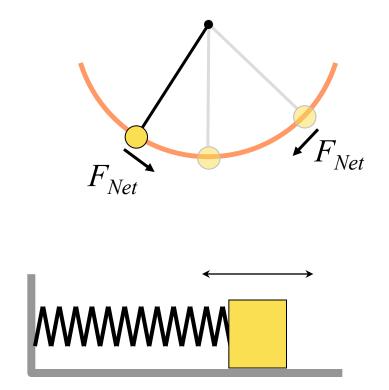
- Determine the average density of the earth
- Measure simple things like lengths and times
 Learn to estimate and propagate errors
- Non-Destructive measurements of densities, structure-
- Measure moments of inertia
 Use repeated measurements to reduce random errors
- Test model for damping; Construct and tune a shock absorber
- Damping model based on simple assumption
- -Adjust performance of a mechanical system
- Demonstrate critical damping of your shock absorber
- Does model work? Under what conditions? If needed, what more needs to be considered?
- Measure coulomb force and calibrate a voltmeter. – Reduce systematic errors in a precise measurement.

Experiment 3

- Goals: Test model for damping
- Model of a shock absorber in car
- Procedure: develop and demonstrate critically damped system
- check out setup, take data, do data make sense?
- Write up results Does model work under all conditions, some conditions? Need modification?

Simple Harmonic Motion

- Position oscillates if force is always directed towards equilibrium position (restoring force).
- If restoring force is ~ position, motion is easy to analyze.



Springs

- Mag. of force from spring ~ extension (compression) of spring
- Mass hanging on spring: forces due to gravity, spring
- Stationary when forces balance

$$F_{S} = -kx$$

$$F_G = -mg$$

$$F_G = F_S$$
$$mg = kx$$

MMMM

 m_2

 m_2

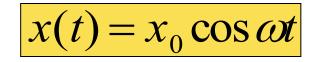
 $x = x_1$

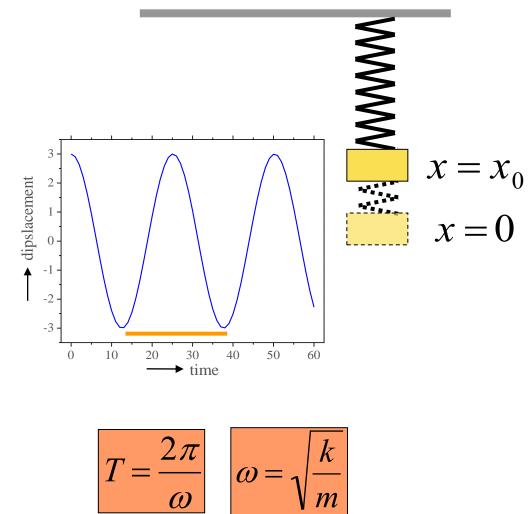
 $x = x_2$

Simple Harmonic Motion

Spring provides
 linear restoring force
 ⇒ Mass on a spring
 is a harmonic
 oscillator

$$F = -kx$$
$$m\frac{d^2x}{dt^2} = -kx$$





Damping

- Damping force opposes motion, magnitude depends on speed
- For falling object, constant gravitational force
- Damping force increases as velocity increases until damping force equals gravitational force
- Then no net force so no acceleration (constant velocity)

$$ec{F}_{damping} = -bec{v}$$

$$F_{gravity} = -mg$$

$$bv = mg$$

$$v_{terminal} = (mg$$

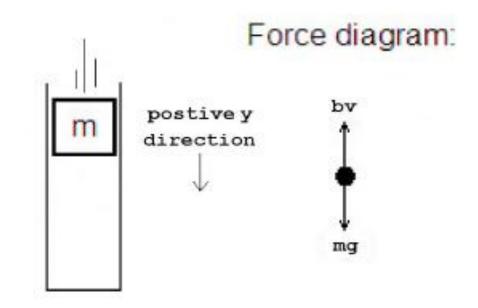
Terminal velocity

• What is terminal velocity?

• How can it be calculated?

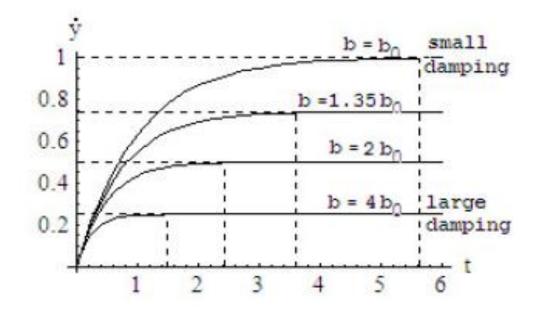
Action Figure

Falling Mass and Drag



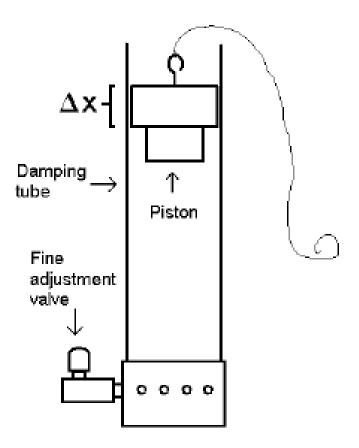
At steady state: $F_{drag} = F_{gravity}$ $bv_t = mg$ From rest: $y(t) = v_t[(m/b)(e^{-(b/m)t} - 1) + t]$

Terminal Velocity



For velocity: $\dot{y}(t) = v_t [1 - e^{-(b/m)t}]$

Experimental Setup for Falling Mass and Drag



How do you measure velocity?

Plotting Graphs

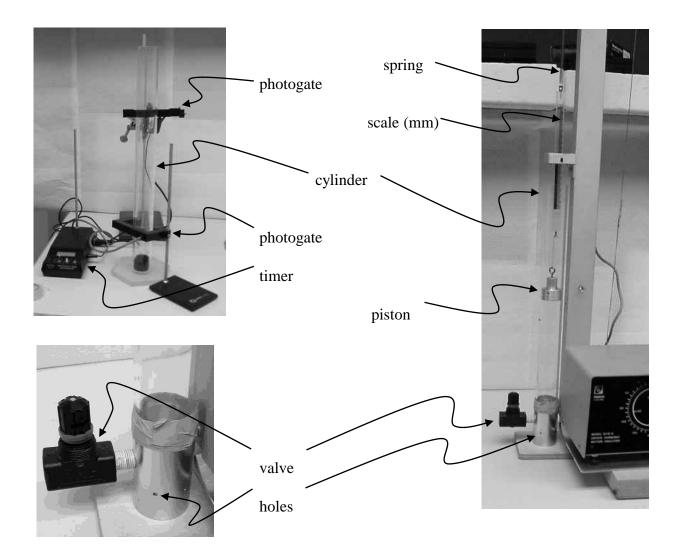
Give each graph a title

Determine independent and dependent variables

Determine boundaries

Include error bars

Experimental setup



Experiment 3: achieve critical damping

- Show/test method
 - Determine spring constant, predict critical damping coefficient
 - Determine how damping coefficient depends on air flow (valve position)
 - easy at terminal velocity
 - how do you know it's *v*_{terminal}?
 - Set damping to critical level

Demonstrate critical damping: show convincing evidence that critical damping was achieved

- Demonstrate that damping is critical
 - No oscillations (overshoot)
 - Shortest time to return to equilibrium position

Clicker Question 11

What is the uncertainty formula for *P* if $P = q/t^{1/2}$

(a)
$$\delta P = [(\delta q)^2 + (\delta t)^2]^{1/2}$$

(b) $\delta P = [(\delta q)^2 + (2\delta t)^2]^{1/2}$
(c) $\epsilon P = [(\epsilon q)^2 + (\epsilon t)^2]^{1/2}$
(d) $\epsilon P = [(\epsilon q)^2 + (2\epsilon t)^2]^{1/2}$
(e) $\epsilon P = [(\epsilon q)^2 + (0.5\epsilon t)^2]^{1/2}$

Error propagation

(1)
$$k_{spring} = 4\pi^2 m/T^2$$

$$\sigma_{\text{kspring}} = \varepsilon_{\text{kspring}} * k_{\text{spring}}$$

$$\varepsilon_{\text{kspring}} = \sqrt{\varepsilon_{\text{m}}^{2} + (2\varepsilon_{\text{T}})^{2}}$$
(2) $k_{\text{by-eye}} = m(g\Delta t^{*}/2\Delta x)^{2}$

$$\sigma_{\text{by-eye}} = \varepsilon_{\text{by-eye}} * k_{\text{by-eye}}$$

$$\varepsilon_{\text{by-eye}} = \sqrt{(2\varepsilon_{\Delta t^{*}})^{2} + (2\varepsilon_{\Delta x})^{2} + \varepsilon_{\text{m}}^{2}}$$

Remember

- Prepare for Quiz 3 and Experiment 3
- Review ideas Taylor through Chapter
 9