Uncertainty, Measurement, and Models

 Overview Exp \#1

 Overview Exp \#1}

Lecture \# 2 Physics 2BL
Spring Quarter 2012

Laboratory TAs

Leandra	Boucheron		Isbouche@ucsd.edu	
Alvin	Cabrera		amcabrer@ucsd.edu	
Casey	Conger		cconger@ucsd.edu	
L. Stevie	Green		Isgreen@ucsd.edu	
Han	Lin		hwl005@ucsd.edu	
Devon	Murphy		dwmurphy@ucsd.edu	
Andreas	Stergiou		anstergi@ucsd.edu	
Po-Chun	Wu		pow004@ucsd.edu	
Jingxin	Ye		j9ye@ucsd.edu	
	A03		A07	
	Boucheron	A04	Lin	A10
	Lin	Boucheron	Green	Murphy
	744463	Conger	744467	Cabrera
	A01	744464		744470
	Conger	A05		
	Green	Green		
	744461	Wu		
	A02	744465	A08	
	Stergiou	A06	Green	
	Ye	Stergiou	Ye	
	744462	Ye	744468	
		744466	A09	
			Murphy	

Laboratory LTAC

Tera Austrum tbell@physics.ucsd.edu

A03		A07	
Boucheron	A04	Lin	A10
	Boucheron		Murphy
Lin		Green	
744463	Conger	744467	Cabrera
A01	744464		744470
Conger	A05		
	Green		
Green			
744461	Wu		
A02	744465	A08	
Stergiou	A06	Green	
	Stergiou		
Ye		Ye	
744462	Ye	744468	
	744466	A09	
		Murphy	

Outline

- What uncertainty (error) analysis can for you
- Issues with measurement and observation
- What does a model do?
- General error propagation formula with example
- Overview of Experiment \# 1
- Homework

What is uncertainty (error)?

- Uncertainty (or error) in a measurement is not the same as a mistake
- Uncertainty results from:
- Limits of instruments
- finite spacing of markings on ruler
- Design of measurement
- using stopwatch instead of photogate
- Less-well defined quantities
- composition of materials

Understanding uncertainty is important

- for comparing values
- for distinguishing between models
- for designing to specifications/planning

Measurements are less useful (often useless)
without a statement of their uncertainty

An example

Batteries

rated for 1.5 V potential difference across terminals in reality...

Utility of uncertainty analysis

- Evaluating uncertainty in a measurement
- Propagating errors - ability to extend results through calculations or to other measurements
- Analyzing a distribution of values
- Quantifying relationships between measured values

Evaluating error in measurements

- To measure height of building, drop rock and measure time to fall: $d=\frac{1}{2} g t^{2}$
- Measure times
$2.6 \mathrm{~s}, 2.4 \mathrm{~s}, 2.5 \mathrm{~s}, 2.4 \mathrm{~s}, 2.3 \mathrm{~s}, 2.9 \mathrm{~s}$
- What is the "best" value
- How certain are we of it?

Calculate "best" value of the time

- Calculate average value $(2.6 \mathrm{~s}, 2.4 \mathrm{~s}, 2.5 \mathrm{~s}$, $2.4 \mathrm{~s}, 2.3 \mathrm{~s}, 2.9 \mathrm{~s}$)
$-\overline{\mathrm{t}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}} / \mathrm{n}$
$-\overline{\mathrm{t}}=2.51666666666666666666666 \mathrm{~s}$
- Is this reasonable?

Significant figures

Uncertainty in time

- Measured values - $(2.6 \mathrm{~s}, 2.4 \mathrm{~s}, 2.5 \mathrm{~s}, 2.4 \mathrm{~s}, 2.3 \mathrm{~s}$, 2.9s)
- By inspection can say uncertainty $<0.4 \mathrm{~s}$
- Calculate standard deviation

$$
\begin{aligned}
& \sigma=\sqrt{\sum\left(\mathrm{t}_{\mathrm{i}}-\overline{\mathrm{t}}\right)^{2} /(\mathrm{n}-1)} \\
& \sigma=0.2137288 \mathrm{~s} \\
& \sigma=0.2 \mathrm{~s} \quad \text { (But what does this mean???) }
\end{aligned}
$$

How to quote best value

- What is uncertainty in average value?
- Introduce standard deviation of the mean

$$
\sigma_{\mathrm{t}}^{-}=\sigma / \sqrt{\mathrm{n}}=0.08725 \mathrm{~s}=0.09 \mathrm{~s}
$$

- Now what is best quote of average value
$-\overline{\mathrm{t}}=2.51666666666666666666666 \mathrm{~s}$
$-\overline{\mathrm{t}}=2.52 \mathrm{~s}$
- Best value is

$$
-\overline{\mathrm{t}}=2.52 \pm 0.09 \mathrm{~s}
$$

Propagation of error

- Same experiment, continued...
- From best estimate of time, get best estimate of distance: 31 meters
- Know uncertainty in time, what about uncertainty in distance?
- From error analysis tells us how errors propagate through mathematical functions
(2 meters)

Expected uncertainty in a calculated sum $a=b+c$

- Each value has an uncertainty

$$
\begin{aligned}
\mathrm{b} & =\mathrm{b} \pm \delta \mathrm{b} \\
\mathrm{c} & =\overline{\mathrm{c}} \pm \delta \mathrm{c}
\end{aligned}
$$

- Uncertainty for a (δa) is at most the sum of the uncertainties

$$
\delta a=\delta b+\delta c
$$

- Better value for δa is

$$
\delta a=\sqrt{\left(\delta b^{2}+\delta c^{2}\right)}
$$

- Best value is
- $\mathrm{a}=\overline{\mathrm{a}} \pm \delta \mathrm{a}$

Expected uncertainty in a calculated product $\mathrm{a}=\mathrm{b}^{*} \mathrm{c}$

- Each value has an uncertainty

$$
\begin{aligned}
& \cdot \mathrm{b}=\mathrm{b} \pm \delta \mathrm{b} \\
& \cdot \mathrm{c}=\mathrm{c} \pm \delta \mathrm{c}
\end{aligned}
$$

- Relative uncertainty for a ($\varepsilon a)$ is at most the sum of the RELATIVE uncertainties

$$
\varepsilon a=\delta a / a=\varepsilon b+\varepsilon c
$$

- Better value for δa is

$$
\varepsilon a=\sqrt{\left(\varepsilon b^{2}+\varepsilon c^{2}\right)}
$$

- Best value is
- $\mathrm{a}=\mathrm{a} \pm \varepsilon \mathrm{a}$ (fractional uncertainty)

What about powers in a product $a=b * c^{2}$

- Each value has an uncertainty
- $b=b \pm \delta b$
- $\mathrm{c}=\mathrm{c} \pm \delta \mathrm{c}$
- $\varepsilon a=\delta a / a \quad$ (relative uncertainty)
- powers become a prefactor (weighting) in the error propagation
- $\varepsilon a^{2}=\left(\varepsilon b^{2}+(2 * \varepsilon c)^{2}\right)$

How does uncertainty in t effect the calculated parameter d ?

$$
\begin{aligned}
& -\mathrm{d}=1 / 2 g \mathrm{t}^{2} \\
& \quad \varepsilon \mathrm{~d}=\sqrt{(2 * \varepsilon \mathrm{t})^{2}}=2^{*} \varepsilon \mathrm{t}
\end{aligned}
$$

$$
\varepsilon d=2 *(.09 / 2.52)=0.071
$$

$$
\delta \mathrm{d}=.071 * 31 \mathrm{~m}=2.2 \mathrm{~m}=2 \mathrm{~m}
$$

Statistical error

Relationships

- Know there is a functional relation between d and t

$$
\mathrm{d}=1 / 2 \mathrm{~g} t^{2}
$$

- d is directly proportional to t^{2}
- Related through a constant $1 / 2 \mathrm{~g}$
- Can measure time of drop (t) at different heights (d)
- plot d versus t to obtain constant

Quantifying relationships

General Formula for error propagation

For independent, random errors

$$
\delta q=\left|\frac{d q}{d x}\right| \delta x
$$

$$
\delta q=\sqrt{\left(\frac{\partial q}{\partial x} \delta x\right)^{2}+\left(\frac{\partial q}{\partial y} \delta y\right)^{2}}
$$

Measurement and Observation

- Measurement: deciding the amount of a given property by observation
- Empirical
- Not logical deduction
- Not all measurements are created equal...

Reproducibility

- Same results under similar circumstances
- Reliable/precise
- 'Similar' - a slippery thing
- Measure resistance of metal
- need same sample purity for repeatable measurement
- need same people in room?
- same potential difference?
- Measure outcome of treatment on patients
- Can't repeat on same patient
- Patients not the same

Precision and Accuracy

- Precise - reproducible
- Accurate - close to true value
- Example - temperature measurement
- thermometer with
- fine divisions
- or with coarse divisions
- and that reads
- 0 C in ice water
- or 5 C in ice water

Accuracy vs. Precision

Random and Systematic Errors

- Accuracy and precision are related to types of errors
- random (thermometer with coarse scale)
- can be reduced with repeated measurements, careful design
- systematic (calibration error)
- difficult to detect with error analysis
- compare to independent measurement

Observations in Practice

- Does a measurement measure what you think it does? Validity
- Are scope of observations appropriate?
- Incidental circumstances
- Sample selection bias
- Depends on model

Models

- Model is a construction that represents a subject or imitates a system
- Used to predict other behaviors (extrapolation)
- Provides context for measurements and design of experiments
- guide to features of significance during observation

Testing model

- Models must be consistent with data
- Decide between competing models
- elaboration: extend model to region of disagreement
- precision: prefer model that is more precise
- simplicity: Ockham's razor

The Earth

Volume - radius
Mass
Density

Experiment 1 Overview: Density of Earth

density $\quad \rho=\frac{M_{E}}{\frac{4}{3} \pi R_{E}^{3}}=\frac{3 g}{4 \pi G R_{E}}=\frac{G M_{E} m}{R_{E}^{2}}=\mathrm{mg}$

$$
R_{E}=\frac{2 h}{\omega^{2}(\Delta t)^{2}}
$$

measure $\Delta \mathrm{t}$ between sunset on cliff and at sea level

Experiment 1: Height of Cliff

rangefinder to get L

Wear comfortable shoes

Sextant to get θ

Make sure you use θ and not $(90-\theta)$

Measure Earth's Radius using $\Delta \boldsymbol{t}$ Sunset

Now, is this time delay measurable?

$$
t=\frac{L}{2 \pi R_{e}} T=\frac{T}{2 \pi} \sqrt{\frac{2 h}{R_{e}}}
$$

$$
T=24 \mathrm{hr}=24 \cdot 60 \cdot 60 \mathrm{~s}
$$

$$
=86400 \mathrm{~s}
$$

$$
R_{e}=6,000,000 \mathrm{~m}
$$

$$
h \sim 100 \mathrm{~m} \quad \text { - our cliff }
$$

$$
t=\frac{86400 \mathrm{~s}}{2 \pi} \sqrt{\frac{200}{6 \times 10^{6}}} \approx 80 \mathrm{~s}
$$

Looks doable!
h - height above the sea level
L - distance to the horizon line

Have we forgotten something?

"The Equation" for Experiment 1a

$$
\begin{aligned}
& t=\frac{T}{2 \pi} \sqrt{\frac{2 C h}{R_{e}}}=\frac{1}{\omega} \sqrt{\frac{2 C h}{R_{e}}} \quad \omega=\frac{2 \pi}{24 \mathrm{hr}} \quad \begin{array}{l}
\text { Which are the variables } \\
\text { that contribute to the } \\
\text { error significantly? }
\end{array} \\
& \text { from previous page. }
\end{aligned}
$$

$$
\begin{gathered}
\Delta t=t_{1}-t_{2}=\frac{1}{\omega} \sqrt{\frac{2 \bar{C}}{\mathrm{R}_{\mathrm{e}}}}\left(\sqrt{h_{1}}-\sqrt{h_{2}}\right) \\
C \equiv \frac{1}{\cos ^{2}(\lambda) \cos ^{2}\left(\lambda_{s}\right)-\sin ^{2}(\lambda) \sin ^{2}\left(\lambda_{s}\right)}
\end{gathered}
$$

Time difference between the two sunset observers.

$$
\begin{aligned}
& \text { What other methods } \\
& \text { could we use to measure } \\
& \text { the radius of the earth? }
\end{aligned}
$$

The formula for your error analysis.

$$
\mathrm{R}_{\mathrm{e}}=\frac{2 C}{\omega^{2}}\left(\frac{\sqrt{h_{1}}-\sqrt{h_{2}}}{\Delta t}\right)^{2}
$$

Eratosthenes
angular deviation $=$ angle subtended

Experiment 1: Determine g

pendulum

$$
\begin{aligned}
& \mathrm{F}=-\mathrm{mg} \sin (\phi)=-\mathrm{mg} \phi \\
& \mathrm{~F}=\mathrm{m} \mathrm{\alpha}=\mathrm{ml} \ddot{\phi}
\end{aligned}
$$

$T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{l}{g}}$
period

Experiment 1: Pendulum

- For release angle θ_{i}, you should have a set of time data $\left(t_{1}^{p}, t_{2}^{p}, t_{3}^{p}, \ldots, t_{N}^{p}\right)$.
- Calculate the average, \bar{t}^{p}, and the the standard deviation, $\sigma_{t p}$, of this data.
- Divide \bar{t}^{p} and $\sigma_{t p}$ by p to get average time of a single period, \bar{T} and standard deviation of a single period σ_{T}.
- Calculate $\mathrm{SDOM}, \sigma_{T}=\frac{\sigma_{T}}{\sqrt{N}}$.
- Now you should have $T \pm \sigma_{T}$ for you data at θ_{i}.
- Repeat these calculations for data at each release angle.

Grading rubric uploaded on website

Error Propagation - example

Ws saw earlier how to determine the acceleration of gravity, g.
Using a simple pendulum, measuring its length and period:
-Length 1: $l=l_{\text {best }} \pm \delta l$

- Period T: $\quad T=T_{\text {best }} \pm \delta T$

Determine g by solving:

$$
g=l \cdot(2 \pi / T)^{2}
$$

The question is what is the resulting uncertainty on $\mathrm{g}, \delta \mathrm{g}$??

Example

Given that: $\begin{aligned} & l=10 \pm 0.1 \mathrm{~m} \\ & \\ & \alpha=20 \pm 3^{0}\end{aligned}$ =a> Find h.
$h=l \cdot \cos \alpha=10 \cdot \cos 20^{\circ}=10 \cdot 0.94=9.4 \mathrm{~m}$
$\delta h=\sqrt{\left(\frac{\partial h}{\partial l} \delta l\right)^{2}+\left(\frac{\partial h}{\partial \alpha} \delta \alpha\right)^{2}}$
$\frac{\partial h}{\partial l}=\cos \alpha$
$\frac{\partial h}{\partial \alpha}=l \cdot(-\sin \alpha)$
always use radians when calculating the errors on trig functions
$\delta \alpha=3^{0}=\frac{2 \pi \mathrm{rad}}{360^{\circ}} \cdot 3^{0}=0.05 \mathrm{rad}$
$\delta h=\sqrt{(\cos \alpha \cdot \delta l)^{2}+(l \cdot(-\sin \alpha) \cdot \delta \alpha)^{2}}=\sqrt{(0.94 \cdot 0.1)^{2}+(10 \cdot[-0.34] \cdot 0.05)^{2}}=0.2 \mathrm{~m}$
$h=9.4 \pm 0.2 \mathrm{~m}$

Propagating Errors for Experiment 1

$$
\begin{aligned}
& \rho=\frac{3}{4 \pi} \frac{g}{G R_{e}} \quad \text { Formula for density. } \\
& \sigma_{\rho}=\frac{3}{4 \pi} \frac{1}{G R_{e}} \sigma_{g} \oplus \frac{-3}{4 \pi} \frac{g}{G R_{e}^{2}} \sigma_{R_{e}} \begin{array}{l}
\text { Take partial } \\
\begin{array}{l}
\text { derivatives and add } \\
\text { errors in quadrature }
\end{array}
\end{array}
\end{aligned}
$$

Or, in terms of relative uncertainties: $\frac{\sigma_{\rho}}{\rho}=\frac{\sigma_{g}}{g} \oplus \frac{\sigma_{R_{e}}}{R_{e}}$
shorthand notation for quadratic sum: $\sqrt{a^{2}+b^{2}}=a \oplus b$

Propagating Errors for \boldsymbol{R}_{e}

$$
\begin{array}{cc}
\mathrm{R}_{\mathrm{e}}=\frac{2 C}{\omega^{2}}\left(\frac{\sqrt{h_{1}}-\sqrt{h_{2}}}{\Delta t}\right)^{2} & \text { basic formula } \\
\sigma_{R_{e}}=\frac{\partial R_{e}}{\partial \Delta t} \sigma_{\Delta t} \oplus \frac{\partial R_{e}}{\partial h_{1}} \sigma_{h_{1}} \oplus \frac{\partial R_{e}}{\partial h_{2}} \sigma_{h_{2}} & \begin{array}{l}
\text { Propagate errors (use } \\
\text { shorthand for addition in } \\
\text { quadrature })
\end{array} \\
\sigma_{R_{e}}=\frac{2 R_{e}}{\Delta t} \sigma_{\Delta t} \oplus \frac{R_{e}}{\sqrt{h_{1}}\left(\sqrt{h_{1}}-\sqrt{h_{2}}\right)} \sigma_{h_{1}} \oplus \frac{R_{e}}{\sqrt{h_{2}}\left(\sqrt{h_{1}}-\sqrt{h_{2}}\right)} \sigma_{h_{2}}
\end{array}
$$

Note that the error blows up at $h_{1}=h_{2}$ and at $h_{2}=0$.

Reminder

- Prepare for lab
- Read Taylor chapter 4
- Homework due next meeting - Taylor 4.6, 4.14, 4.18, 4.26

