
Experiment 1, Physics 2BL
Deduce the mean density of the Earth.

Last Updated: 2009-04-23

Preparation
Before this experiment, we recommend you review
or familiarize yourself with the following:
– Chapters 1-4 in Taylor
– Partial derivatives

1. PHYSICS

1.1. Derivation of mean density in terms
of gravity and radius, ρ(g,R

E
)

We will be determining the mean density of the Earth
by calculating the radius of the earth, R

E
, and the accel-

eration due to gravity at sea level, g. The force of gravity
on a mass m at sea level is given by the following:

F =
GM

E
m

R2
E

= mg

Where G = 6.673× 10−11 m3

kg·s2 . Next we solve for the
mass of the Earth, M

E
in terms of the acceleration due

to gravity at sea level, g:

M
E

=
gR2

E

G

Which can be substituted into the expression for mean
density.

ρ =
M

E

4
3πR

3
E

=
3g

4πGR
E

(1)

1.2. Measuring the radius of the Earth

The diagram above requires a little imagination. The
Sun is represented by the small circle that is making a
24 hour orbit (counterclockwise) around a large, non-
rotating Earth. The tangent lines to the circle represent
the event of a sunset. The first sunset happens at the
bottom of the cliff, the second one at a height h above
sea level. L is the distance to the horizon from the height
of the cliff.

Questions

1. In our experiment, who will see the sunset first? (The
person on the top of the cliff or the person on the beach?)
If this experiment were to be conducted on the East
Coast, facing the Atlantic Ocean at sunrise, who would
see the sunrise first? Draw a diagram similar to the
one at the beginning of this section to explain the
East Coast situation.

We will now use geometry to solve for R
E

given quan-
tities that we can measure. The Pythagorean Theorem
gives us,

L2 +R2
E

= (R
E

+ h)2

which can be rearranged and simplified for h << RE :

L2 = 2R
E
h+ h2 ≈ 2R

E
h; L ≈

√
2R

E
h

Now we set up a proportion to solve for the time in be-
tween the two sunsets, ∆t. This corresponds to the time
it takes for the ”sun” to go around the circumference of
the Earth:

L

∆t
=

2πR
E

24hrs

We can now solve for the R
E

in terms of the height of
the cliff, h, and the time between sunsets, δt. We will
substitute ω = 2π

24hrs .

R
E

=
2h

ω2(∆t)2
(2)
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Now lets re-derive this expression using the small angle
aproximation approach. Please check Appendix 1 at the
end of this lab guide to refresh your memory about small
angles. This sort of argument is used very often in physics
derivations.

Looking at the figure we get the following relationship:

cos(θ) =
R

E

R
E

+ h

Using Taylor Expansion for h/R
E
<< 1 on both sides

gives:

1− θ2

2
≈ 1− h

R
E

Note that on the right hand side we used the expansion
1

1+ε ≈ 1 − ε where ε is a small value. Rearranging and
substituting θ = ω∆t gives the same expression that we
got in equation (2).

Questions

2. Using equation (2), estimate the difference in time of
sunset between sea level and at 200m above sea level.
Use RE ≈ 6000km and ω = 2π

1day .
(one day is 86, 400s).

3. For the previous example, calculate θ using the
exact relationship for cos(θ) = RE

RE+h .
What is the value of θ2 (terms that we are keeping)?
What is the value of θ4 (terms that we are neglecting)?

1.3. Correction factors to RE

In order to account for the height of the person on the
beach hperson (their eyes are not exactly tangent to the
sea level of the Earth), we must replace h in equation (2)
with the following formula.

hCorrect = (
√
hCliff −

√
hperson)2

where hperson is defined as the distance from sea level
to the eye level of the person on the beach, hCliff =
h+hperson, and h has now been redefined as h = Lcos(θ)
(the height difference between a person on the beach and
a person on the cliff). See diagrams in the lecture notes
and in section 3 of these guidelines for clarification on
how each of these heights are defined.

We must also account for our latitude λL = 32.870 and
the tilt of the earth in relation to the sun due to time of
year λS = −23.40 sin( 2πd

365 ). Here d is the number of days
since the last equinox (September 22 or March 20) where

the tilt of the Earth is directly perpendicular to the rays
of light that hit the equator.

C =
1

cos2(λL) cos2(λS)− sin2(λL) sin2(λS)

If we account for these correction factors, the final
equation for measuring RE is the following:

RE = 2C(

√
hCliff −

√
hperson

ω∆t
)2 (3)

Questions

4. Using hCliff = 200m and hperson = 2m,
calculate hCorrect. Suppose the observer on the beach lied
about his height and is actually 1.5m tall. What
would be the percent error [ calculated−actualactual × 100%]
on hCorrect from using 2m instead of 1.5?

1.4. A Simple Pendulum

In order to measure g a simple pendulum will be con-
structed which will consist of a mass hanging from string.
For this derivation a dot means first derivative in time
and a double dot means second derivative in time. Ini-
tially the mass is displaced a small angle, φ(t = 0) = φ0,
with no initial angular velocity, φ̇(t = 0) = 0. A small
component of the force of gravity torques the mass to-
wards the equilibrium point. Using the small angle ap-
proximation (See Appendix 1 ):

F = −mg sin(φ) ≈ −mgφ

The linear acceleration is simply the length of the
string times the angular acceleration:

F = ma = mlα = mlφ̈
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Combining the previous two equations gives the fol-
lowing differential equation.

φ̈+
g

l
φ = 0

The characteristic equation r2 + g
l = 0 has the roots

r = ±i
√

g
l = iω and the solution is simple periodic mo-

tion:

φ(t) = c0 cos(ωt+ θ0) = φ0 cos(ωt)

Where plugging in the initial conditions and solving
for the constants gives c0 = φ0 and θ0 = 0. The useful
part of this derivation is the period of these oscillations,

T =
2π
ω

= 2π

√
l

g
(4)

Questions

5. If you were constructing a pendulum what things
would you take into consideration to simulate an
idealized small-angle simple pendulum? Specifically
what should the mass of the string be in comparison to
that of the mass? What about the length of the string
or the shape of the mass? What would be the effect of
conducting this experiment in a vacuum as opposed to
air?

6. Rearrange equation (4) to solve for g in terms of
l and T . Your lab partner measures the length of your
string as 45.3 cm but has undershot it by 3 cm because
he neglected to measure all the way to the center of
mass. If your group measures the period to be 1.4 s
what is the value of g that you calculate? What
value should you have gotten?

2. METHODS FOR STATISTICAL
ANALYSIS

The following are math tools that you will need to
use in this experiment and the ones to come. For extra
practice you will be directed to homework problems in
Taylor. The solutions to these problems will be posted
on the course website.

2.1. Significant Figures and Rounding

Whenever you finish measuring or calculating a value
and its uncertainty you MUST round your answer to its
proper form.

First off let’s refresh your memory about significant
digits. Non zero digits are always significant. A zero is
only significant if it is in between significant digits (like
in 4009) or if there is a decimal point and the zeros are
to the right of significant digits (like in 63.00 (4 sig figs)
but not in .00049(2 sig figs)).

There are two simple rules for rounding:
1. Round the error to one sig fig, unless it is a

1, in which case you leave two sig figs. For example
if you calculate the error to be 0.000459 you must round
it to 0.0005. If the error is 1.356 then you round it to
1.4.

2. Round your value so that it ends with the
same digits place as the error. For example 9.874501
± 0.000459 gets rounded to 9.8745 ± 0.0005. Another
example is 54590 ± 2349 which gets rounded to 55000 ±
2000.

Perhaps students get the feeling that if they round off
their final answer to a few digits it looks like they didn’t
do as much work. This is not the case. Always report a
measurement and finish up a calculation by leaving an
answer in properly rounded form along with its units!
Questions

7. Round the following values:
(a) 1.375x103± 58 m
(b) 0.035015 ± 0.000126 g

For extra practice see Taylor #3.10

See Appendix 3 for additional rules on sig
figs and rounding

2.2. Random Errors

Many measurements are not particularly easy to make
and have a different value for each trial. This is because
the measurement device is more precise than the statisti-
cal fluctuations of the measurement. An example would
be measuring the period of a pendulum. The stopwatch
may be able to give the time to within 0.1s, but the pe-
riod you measure varies by up to 0.8s. Suppose you make
N measurements of a value for x and distinguish them
with the subscript i. In order to get an average value for
x you would sum over the different values xi and divide
by the total number of measurements.

x̄ =
∑
xi
N

In order to get the standard deviation, which would be
the error on x, you must subtract each value xi from the
mean, square those deviations, sum over them, divide by
N − 1, and then take the square root.

σx =

√∑
(x̄− xi)2

N − 1
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A handy way of keeping track of this process is with
the following table. The idea is to fill out the first col-
umn, use the mean to fill out the second column, etc.
The middle column is not completely necessary, though
sometimes it is useful to compare the different deviations
to see whether any of the measurements are suspiciously
off.

xi xi − x̄ (xi − x̄)2

x1 ... ...
x2 ... ...
... ... ...
xN ... ...∑
xi

∑
(x̄− xi)2

x̄ σx

For extra practice see Taylor #4.6
The nice thing about random errors is that they can be

reduced by simply taking more trials. With every new
measurement you are increasing N and decreasing the
standard deviation, σx.

2.3. Instrumentational Errors

Many measurements you make might be the same ev-
ery time you try to measure them, such as the length of a
string or the mass of a ball, however they are not known
to infinite accuracy. Here are the rules for finding the
error of a scientific instrument:

1. If the scale reads 32.1 g that means you know the
mass as 32.1 ± 0.1 g.

2. If your ruler has tick marks for every mm and you
read 12.60 cm (making a rough estimate of the last digit)
that means you know the length to 12.60 ± 0.05 cm.

The nice thing about some instrumentational errors is
that they can be reduced by measuring a cluster of very
similar things and then dividing by the number being
measured. For example, measuring the width of a piece
of paper by first measuring the thickness of 100 pages and
then dividing the total length and the error on the total
length by 100. Another example would be to measure
the time for 10 periods of a pendulum to pass and then
dividing the total time and the error on the total time
by 10. This is very similar to the random errors that
we found by recording the individual measurements and
calculating the mean and standard deviation.

There are some instrumentational errors, however,
that can not be reduced by repeated measurements.
These usually involve a digital instrument that is being
used to measure a value that does not fluctuate at the
resolution of that instrument. An example would be a
digital scale or a voltmeter.

2.4. Error Propagation

The following is the single most important equation
you will need for this course. Suppose you are calculating
a value f which is a function of x and y. You measure x
to be x0 ± σx and y to be y0 ± σy. The errors from the
measured values must be added in quadrature, though
each is “weighted” by its importance in the function f .
The “weighting” comes from multiplying each error times
its partial derivative evaluated at the values (x0, y0)

σf =

√
[(
∂f

∂x
)
|(x0,y0)

σx]2 + [(
∂f

∂y
)
|(x0,y0)

σy]2 (5)

Questions

8. Using Equation (5) write out the error propagating
expression for σg when g(l, T ) = 4π2l

T 2

For extra practice see Taylor #3.28

2.5. Systematic Errors

Sometimes even though you have accounted for all of
the random fluctuations of your measurement, and you
have noted the precision of your instruments, there might
be some sort of hidden bias that is messing up your mea-
surements. For example, you could spend all day trying
to measure something with a ruler but if that ruler is
not calibrated correctly then your measurements will be
incorrect. Or let’s say you are measuring the charge on a
capacitor when you apply a voltage across it. Your mea-
surement will be off unless you make sure to completely
discharge the capacitor at the beginning. In general, sys-
tematic errors are associated with flawed equipment or a
flawed experimental design. Unlike random errors, a sys-
tematic error can not be estimated by repeating a mea-
surement many times. The focus of these experiments
will be to try to account for all of the errors in your
experiment. Sometimes the errors that you keep track
of will not be sufficient for explaining why your calcu-
lated values differ from the expected values. It will then
be your job to speculate what sorts of systematic errors
could have lead you to incorrect results.

See section 4.1 in Taylor for a discussion of random
Vs systematic errors.

3. EXPERIMENTAL PROCEDURE

3.1. Measuring The Height of The Cliff

At the beginning of first lab section we will walk to
Black’s beach. We will split up into groups of two: one
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member of each group will go to the top of the cliffs and
one member of each group will walk down to the beach.
You will want to stand at a high position on the beach.
Your TA will guide you to a good location. You must
remember where you stand because you will need to return
to this same exact position when measuring the difference
in time of the sunset. The people on the beach will hold
a large reflective mylar sheet up toward the people on the
cliff. Then, the people on the cliff will use a rangefinder to
measure the distance from the top to the bottom, L (See
the cartoon above). Don’t forget to record an associated
uncertainty with this measurement! Those standing on
the beach should NOT look up toward the people on the
cliff while rangefinder measurements are being made.

Once the students on the cliff have completed their
rangefinder measurements, the people at the beach will
measure the angle, θ to the top of the cliff using a hand-
made sextant. This instrument allows you to use your
eye to align the straight edge of a protractor and com-
pare this angle to a vertical plumb line. Don’t forget
to record and associated uncertainty with this θ mea-
surement. Keep in mind that a breeze might be blowing
and the person holding the sextant might not be per-
fectly steady, so you will likely see the plum bob oscillate
slightly. If the plum bob is oscillating through a couple
degrees of what you record for θ, then you can not claim
that your uncertainty in this measurement is less than a
degree. Consider this when recording your uncertainty.
Note: the uncertainty is determined by the one making
the measurement. It is not necessarily a fixed number. It
depends on how well you believe you made your measure-
ment

After these measurements are made you will be able
to calculate the difference in height between a person the
on beach and a person on the cliff:

h = L cos(θ)

In order to use equation (2) to determine the radius of
the Earth, you need hCliff , which depends on h and
hperson. However, to calculate a more accurate value of
RE , you must use equation (3), which takes into account
the fact that the eyes of the person on the beach are
not at sea level when ∆t (the time difference of sunset)
measurement is made (see next section). See section 3.2

for details about measuring hperson. Also make sure you
are using the correct angle and not 900 − θ.

This is a simple version of a sextant, an instrument used to
measure angles in comparison to a plumb vertical line.

3.2. Difference in Time of Sunset

The individual group members will need to coordi-
nate to return to the beach in pairs and stand at the
same spots as before to record the time of sunset. Of
course it will be necessary to synchronize watches be-
fore performing the measurement. Each person should
measure the time at which he/she observes the sunset
with an associated uncertainty. You might call these
times tCliff ± σtCliff

and tbeach ± σtbeach
. These mea-

surements must be made on a clear day, otherwise the
time difference of sunset is not easy to determine. If
there are no clouds, the exact time of sunset should
be defined as precisely when the last rays of light go
below the horizon. From these measurements you can
then determine ∆t = tCliff − tbeach and its uncertainty
σ∆t =

√
σtCliff

2 + σtbeach
2. After the time difference is

determined it is possible to calculate RE using equation
(3).

Before the person on the beach leaves, he/she should
estimate the height of his/her eye level from sea level,
hperson. How you do this is up to you. Keep in mind,
unless you have very precise surveying equipment, you
estimation of hperson should have a large uncertainty.
(Uncertainties on the order of centimeters would not be
appropriate here.)

3.3. The Pendulum

For this part of the experiment you will be measuring
the period of a pendulum as a function of angle. First
choose a weight and measure its mass. Cut a length of
string (fishing line recommended), tie it to the weight. In
the lab there are large grey plastic disks with protractors
attached to them. Use two stands to clamp one of these
disks in a vertical position a couple feet from the table
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top. Also in the lab there are silver colored pistons (with
eye hooks) that fit snugly into the center hole of these
plastic disks. Insert one of these pistons into the hole
of your disk and use a nut, eye-hook, and black plastic
washer to clamp the piston to the disk. For clarification,
see the demo setup in lab. Do NOT use tape to secure
the piston to the disk. Then tie the string to the eye hook
screw. You should now have a pendulum setup that al-
lows you to measure the angle of release. Measure the
length of the string to the center of mass of the weight.
Note: The position of the center of mass is a rough es-
timate, so some guess should be made as to the error of
this estimate.

Now you will measure the period of the pendulum at
different release angles using a stopwatch. Begin at some
”large” angle, maybe 50 degrees, and release the weight.
Measure the time for the pendulum to oscillate through p
periods, where p should be at least 10. Repeat this mea-
surement N times, where N should be at least 10 trials.
Next, decrease the release angle by about 10 degrees and
measure the time of p oscillations N times. Continue de-
creasing the release angle by these 10 degree increments,
each time measuring the time of p oscillations N times,
until you reach 10 degrees. Continue this same proce-
dure but now decreasing by increments of 2 degrees. You
should end with a measurement at the release angle of 2
degrees.

From this data you will then be able to make a graph
of the period versus the release angle. And from this plot
you will be able to decide which data is best to use to
determine g and thus ρ. Keep in mind your data is NOT
a measurement of a single period. For a given release
angle θi, you will need to average the time data, then
divide your average by p to find the average time of a
single period, T̄θi

. See section 4.2 and 4.3 on how to
determine the uncertainty on T̄θi

.

Questions

9. Under what conditions is equation (4) valid?
Considering the procedure for the pendulum experiment
(i.e. measuring the period at various angles), what
values of T are valid in the equation for g (derived
from equation (4)).

4. ERROR ANALYSIS

The following is just a rough description of what you
need to include in your report. For further details, refer
to experiment 1 grading rubric posted on the website.

4.1. Instrumentational errors

Determine the errors for ∆t, θ, L, and l. Justify how
these errors were determined.

4.2. Random errors

At this point, for a given angle θi, you should have a
set of time values (tp1, t

p
2, t

p
3, ..., t

p
N ). How do you approxi-

mate the uncertainty in these time measurements? If you
think about it, you’ll realize that the error in your time
measurements classifies as random error, which implies
you can quantify the uncertainty in each tp measurement
by calculating the standard deviation of your set of tp
values. In other words, the standard deviation of the
set of tp values corresponds to the uncertainty on each
individual trial. For the first angle of release, calculate
the standard deviation of the set of tp values using the
method outlined in section 2.2, then use Excel to com-
pute the standard deviations for the time measurements
at the remaining release angles. Keep in mind, this stan-
dard deviation, σtp represents the uncertainty on the time
of p oscillations. So, the uncertainty of a single period
must be σtp divided by the number of oscillations p (i.e.
σT = σtp

p ). However, this uncertainty is not the uncer-
tainty on the mean of a period. To find the uncertainty
on the mean of a single period, you must calculate the
standard deviation of the mean, which is discussed in the
next section.

4.3. Standard Deviation of the Mean

In order to make a graph of period versus release an-
gle that includes error bars and to calculate the uncer-
tainties associated with RE , g, and ρ, we need to know
the uncertainty of the mean period for each release an-
gle. The uncertainty in a mean can be calculated and is
called the standard deviation of the mean. It is defined
as σT̄ = σT√

N
, where N is the number of trials. Now, cal-

culate T̄ ± σT̄ for each angle of release. Use these mean
values and uncertainties to make a plot of Period versus
release angle that includes error bars.

Don’t worry if you don’t fully understand standard de-
viation of the mean. It will be used again and discussed
in more detail in experiment 2. We bring it up here be-
cause it is needed in order to do the calculations correctly.
At the least, you just need to be aware that the standard
deviation and the standard deviation of the mean are dif-
ferent quantities. The former corresponds to the uncer-
tainty on each individual measurement, whereas the latter
corresponds to the uncertainty in the mean.

4.4. Summary of Pendulum Error
Analysis (Sec 3.3, 4.2, 4.3)

- For release angle θi, you should have a set of time
data (tp1, t

p
2, t

p
3, ..., t

p
N ).

- Calculate the average, t̄p, and the the standard
deviation, σtp , of this data.
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- Divide t̄p and σtp by p to get average time of a single
period, T̄ and standard deviation of a single period σT .

- Calculate SDOM, σT̄ = σT√
N

.

- Now you should have T̄ ± σT̄ for you data at θi.

- Repeat these calculations for data at each release
angle.

4.5. Error Propagation

Use Equations (1), (3), and (4) to propagate errors to
find σRE

, σg, and σρ. Propagation the error for RE is an
extensive calculation. σRE

has already been worked out
for you in the lecture slides and you may use the result
if you like. To determine σg from equation (4), you will
need to decide from your graph which T̄ ± σT̄ to use.

Useful note: θ ± σθ needs to be in radians when prop-
agating error.

5. CONCLUSIONS

The expected values for this experiment are RE =
6, 378km, g = 9.81ms2 , and ρ = 5.52 g

cm3 In your conclu-
sion compare the values you calculated, along with their
errors, to the the expected values. Do not simply report
the percent error on each. If your final values are very
different from the expected values, you must speculate
as to the systematic errors that might have caused your
answer to be off.

Questions

10. Suppose you calculated ρ = 5.58± .08 g
cm3 .

Comparing this to the accepted value of ρ, what can
you conclude about your determination of ρ? Why?
What if you calculated ρ = 5.61± .08 g

cm3 ;
What could you conclude?
(Chapters 1-3 might be useful here.)

Appendix 1: The Small Angle Approximation

Sometimes it can be very useful to approximate a very
small angle using the first few terms of the Taylor expan-
sion for sine and cosine functions.

cos(θ) ≈ 1− θ2

2
; sin(θ) ≈ θ

Which throws out terms that are of order θ4 or smaller
for cosine and terms that are of order θ3 or smaller for
sine.

Appendix 2: Lab Equipment- The Laser
Range-finder

In order to measure the distance between the people
on the beach and the people we will be using a laser
rangefinder that measures the time delay between send-
ing out a laser pulse and receiving it back after it bounces
off of something. things that limit the accuracy are...
this is very similar to the speedometer that a traffic cop
uses, only that sends out multiple pulses to measure the
Doppler shift of return pulses.

Appendix 3: Sig Fig and Rounding Addendum

In general, when you make a measurement, the uncer-
tainty corresponding to this measurement should have
one significant figure, unless that sig fig is a 1 (in which
case you should have two sig figs). If your data is reported
with the minimum allowable number of sig figs, then you
might be wondering, ”When do the rules of section 2.1
ever apply?” The rules of section 2.1 apply when you
calculate some quantity using your data. For example,
if we rearrange equation (4) we can find that g = 4π2l

T 2 .
Suppose you measured l = .315± .005m and determined
T̄ ±σT̄ = 1.132± .008sec (See section 4.2 and 4.3 for de-
tails about T̄ and σT̄ ). Then g = 9.7045....±0.8250....ms2 .
However, when reporting your value, you must round ac-
cording to the rules of section 2.1. In that case you would
write down g = 9.7± 0.8ms2 as the value you obtained for
the gravitational constant at sea level.

What if you have subsequent calculations that require
g and/or other quantities? In such cases it is best not to
round until you obtain your final result. Most calculators
can easily carry more digits than are likely to be signif-
icant. If you like, you may use a calculator to compute
everything and thus eliminate the possibility of rounding
error in your final result. Alternatively, if you would like
to round during intermediate steps but also keep round-
ing error to a minimum, you can simply keep one extra
sig fig in all quantities used to obtain your final result.
For example, to determine ρ, you need g and RE . Then,
in the calculation for ρ you would use g = 9.70± 0.83ms2 .

Note: While you might keep one extra sig fig in g here
for your calculation of ρ, when you report your result for
g and compare it to the accepted value, you should only
keep 1 sig fig as stated earlier.


