Do the following problems from Shutz Chapter 3: 3,7,9,10,24,30

1. Let $F^{\alpha \beta}$ be an antisymmetric tensor. Show that

$$
F_{\mu}^{\alpha}{ }_{, \nu} F_{\alpha}^{\nu}=-F_{\mu \alpha, \beta} F^{\alpha \beta}
$$

2. Is the determinant of the metric tensor, $g \equiv \operatorname{det}\left(g_{\mu \nu}\right)$ a scalar, i.e. is it the same in all frames? Check for both the ordinary Lorentz transformation, and the more general coordinate transformation we discussed:

$$
\Lambda_{\bar{\alpha}}^{\beta}=\frac{\partial x^{\beta}}{\partial x^{\bar{\alpha}}}
$$

3. A two indexed "object" $X^{\mu \nu}$ is defined as the "direct sum" of two vectors: $X^{\mu \nu}=A^{\mu}+B^{\nu}$. Is $X^{\mu \nu}$ a tensor? Is there a transformation law to take X from coordinate frame \mathcal{O} to a new coordinate frame $\overline{\mathcal{O}}$? i.e. obtain $X^{\bar{\mu} \bar{\nu}}$?
