Do the following problems from Shutz Chapter 1.14: 1, 3, 8, 17, 21
Do the following problems from Shutz Chapter 2.9: 2,11,13,14,25,28,29,30

1. Frame $\overline{\mathcal{O}}$ moves with velocity v with respect to frame \mathcal{O}.
(a) A rod in frame $\overline{\mathcal{O}}$ makes an angle $\bar{\theta}$ with respect to the forward direction of motion. What is the angle θ measured in frame \mathcal{O} ?
(b) An object in frame $\overline{\mathcal{O}}$ is fired with velocity u at angle $\bar{\theta}$ with respect to forward direction of motion. What is angle θ measured in \mathcal{O} ? How about if the object is a light ray?
2. A particle with rest mass m and 4 -momentum \vec{p} is observed by someone moving with 4 -velocity \vec{u}. Show that:
(a) the energy observed is $E=-\vec{p} \cdot \vec{u}$
(b) the rest mass they observe is $m^{2}=-\vec{p} \cdot \vec{p}$
(c) the 3 -vector (ordinary) momentum they observe has magnitude $|\mathbf{p}|=\left[(\vec{p} \cdot \vec{u})^{2}+\vec{p} \cdot \vec{p}\right]^{1 / 2}$
(d) The ordinary velocity they measure is: $|\mathbf{v}|=\left(1+\frac{\vec{p} \cdot \vec{p}}{(\vec{p} \cdot \vec{u})^{2}}\right)^{1 / 2}$
(e) The 4 -vector \vec{v}, whose components in the observer's frame are $v^{0}=0, v^{i}=d x^{i} / d t=$ ordinary velocity, is given by $\vec{v}=-\vec{u}-\vec{p} /(\vec{p} \cdot \vec{u})$.
