Constants and Factors

Speed of light: $c=299,792,458 \mathrm{~m} / \mathrm{s}$ exactly (about 3×10^{8} meters $/ \mathrm{sec}$)
$\epsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} ; \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} ; c=1 / \sqrt{\left(\epsilon_{0} \mu_{0}\right)}$
Newton's constant $G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \mathrm{~kg}$; Earth's surface $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Mass of proton and neutron about $1.67 \times 10^{-27} \mathrm{~kg}$
Mass of electron: $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
Standard air pressure: $P_{0}=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=1$ Atmosphere
Speed of sound: in Air: $343 \mathrm{~m} / \mathrm{s}$, in Water: $1500 \mathrm{~m} / \mathrm{s}$, in Steel: $5940 \mathrm{~m} / \mathrm{s}$
Density of air: $1.2 \mathrm{~kg} / \mathrm{m}^{3}$; of water: $1000 \mathrm{~kg} / \mathrm{m}^{3}$
Specific Heats (in kcal/(kg ${ }^{0} \mathrm{C}$) or Btu/(lb $\left.\left.{ }^{0} \mathrm{~F}\right)\right)$: water: 1, ice: 0.49 , wood: 0.33 , stone: 0.20 , iron: 0.107 , glass: 0.033

Energy Units: $1 \mathrm{kcal}=4184$ Joule $=3.97 \mathrm{Btu} ; 1 \mathrm{kWh}=3.6 \times 10^{6} \mathrm{~J} ; 1 \mathrm{Btu} / \mathrm{hr}=0.293$ Watt
Boltzman constant $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$, Universal gas constant $\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$
Avagadro's number $N_{A}=6.022 \times 10^{23}$ molecules $/$ mole
Heat of transformation for Water $(\mathrm{kJ} / \mathrm{kg})$: melting: 334, vaporization: 2257
Conversions: meter $=3.28 \mathrm{ft}$; meter $^{3}=1000$ liters
Index of refraction: air: $1.0003(\approx 1.0)$, water: 1.333 , ice: 1.309 , glass: 1.5 , diamond: 2.419

Formulas from Physics 2A

Velocity, position, acceleration: $\vec{v}=d \vec{r} / d t$, acceleration $\vec{a}=d \vec{v} / d t ; \vec{v}=\vec{v}_{0}+\vec{a} t$, and $\vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}$ Circular motion: $a=v^{2} / r$; Newton's acceleration law: $\vec{F}=d \vec{p} / d t=m \vec{a}$; Weight: $\vec{W}=m \vec{g}$

Formulas for Physics 2C

Wave velocity: $v=\lambda / T=f \lambda$, with wavelength λ; period T; frequency $f=1 / T$
Simple harmonic wave: $y(x, t)=A \cos (k x \pm \omega t)$, with displacement of the medium y; amplitude of wave A; wave number $k=2 \pi / \lambda$; angular frequency $\omega=2 \pi f$. Wave speed is $v=\omega / k$.
Small amplitude wave on a stretched spring has speed: $v=\sqrt{F / \mu}$ with F the string tension and μ the mass per unit length of the string.
Average wave power on a string: $\bar{P}=\frac{1}{2} \mu \omega^{2} A^{2} v=\frac{1}{2} F \omega k A^{2}$
Wave intensity is power per unit area carried by wave. For 3-D waves $I=P /\left(4 \pi R^{2}\right)$, with P total power, and R distance from source of wave.
Linear wave equation: $\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}$
Speed of sound in gas: $v=\sqrt{\gamma P_{0} / \rho}$, where P_{0} is the gas pressure, ρ is the density, and $\gamma=5 / 3$ in monatomic gases like Helium and $\gamma=7 / 5$ in diatomic gases like air; speed of sound in air: $343 \mathrm{~m} / \mathrm{s}$ Speed of sound in solid: $v=\sqrt{B / \rho}$, where $B=-\Delta P /(\Delta V / V)$ is the bulk modulus of elasticity
Average intensity of sound: $\bar{I}=\frac{1}{2} \Delta P_{0}^{2} /(\rho v)=\frac{1}{2} \rho \omega^{2} s_{0}^{2} v$, where ΔP_{0} is the pressure amplitude and s_{0} is the displacement amplitude
Sound is sometimes measured in decibels: $\beta=10 \log \left(\frac{I}{I_{0}}\right)$, where $I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
Standing waves have formula: $y(x, t)=2 A \sin (k x) \sin (\omega t)$; for strings: ends clamped (ends nodes) $L=n \lambda / 2$ with n and integer.
Doppler shift in sound from moving source: $f^{\prime}=f /(1 \pm u / v)$ for source moving away $(+)$ or towards $(-)$ observer, where v is sound speed and u is source speed
For moving observer: $f^{\prime}=f(1 \pm u / v)$ for observer moving towards $(+)$ or away (-)
Hydrostatic equilibrium: no net force on any fluid element: pressure is $P=P_{0}+\rho g h$, with P_{0} surface pressure, ρ density, and h the depth in liquid.
Archimedes' principle: Buoyancy force is equal to the weight of the fluid displaced by the object
Continuity equation (conservation of mass): $\rho v A=$ constant along a flow tube (A area, v velocity)
Bernoulli's equation (conservation of energy): $P+\frac{1}{2} \rho v^{2}+\rho g h=$ constant along a flow tube
Temperature scales: $T_{\text {Celsius }}=T_{\text {Kelvin }}-273.15$ and $T_{\text {Fahrenheit }}=\frac{9}{5} T_{\text {Celsius }}+32$
$\Delta Q=C \Delta T$, where ΔQ is heat transferred, ΔT is temperature change, and C is the heat capacity of the object.
Also $\Delta Q=c m \Delta T$, where c is the specific heat of the object, and m is the mass

Heat flow rate (in J / s): $H=-k A(\Delta T / \Delta x), k$ is thermal conductivity (in $\mathrm{W} / \mathrm{m} \mathrm{K}$), A is area Heat flow rate (in $\mathrm{Btu} / \mathrm{hr}$): $H=A \Delta T / R$, where R Factor: $R=\Delta x / k\left(\mathrm{in}_{\mathrm{ft}}{ }^{2} \mathrm{~F}^{0} \mathrm{hr} / \mathrm{Btu}\right)$
Stefan-Boltzmann radiation law: Power radiated is $P=e \sigma A T^{4}$, where e is emmisivity, $\sigma=$ $5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot K^{4}, T$ is temp in Kelvins, A surface area of object

Ideal gas law $P V=N k T ; P V=n R T$, with N number of molecules and n number of moles.
Maxwell-Boltzmann distribution: $d N=(d N / d v) d v=4 \pi N(m /(2 \pi k T))^{3 / 2} v^{2} \exp \left[-m v^{2} / 2 k T\right] d v$
RMS speed of molecule in gas is given by: $\frac{1}{2} m \bar{v}^{2}=\frac{3}{2} k T$
Thermal expansion coefficients: Linear $\Delta L=\alpha L \Delta T$, Volume $\Delta V=\beta V \Delta T$, where $\beta=3 \alpha$
Heat of transformation: $Q=L m$, with L heat of fusion, vaporization, etc. and m mass
First law of thermodynamics: $\Delta U=Q-W, \Delta U$ is change of internal energy, Q is heat into system and work done by system is $W=\int_{V_{1}}^{V_{2}} P d V$; ideal gas: $U=n c_{V} T$
Processes: Isothermal: $Q=W, W=n R T \ln \left(V_{2} / V_{1}\right) ; P V=\mathrm{constant}$
Constant volume: $Q=\Delta U ; W=0 ; Q=n c_{V} \Delta T, C_{V}$ specific heat at constant volume
Isobaric: $W=P\left(V_{2}-V_{1}\right) ; Q=n C_{P} \Delta T ; C_{P}$ specific heat constant pressure; $C_{P}=C_{V}+R$;
Adiabatic: $Q=0 ;(\Delta U=-W): W=\left(P_{1} V_{1}-P_{2} V_{2}\right) /(\gamma-1) ; P V^{\gamma}=$ constant; $\gamma=C_{P} / C_{V}$
Degrees-of-freedom (dof): Monatomic has 3, diatomic has 5, triatomic has 6; $C_{V}=($ dof $) \frac{1}{2} R$
Heat engine working in cycle has efficiency $\epsilon=W / Q_{h}=1-Q_{c} / Q_{h}$; For reversible processes: $Q_{c} / Q_{h}=T_{c} / T_{h}$ and efficiency is called Carnot efficiency: $\epsilon \leq \epsilon_{\text {Carnot }}=1-T_{c} / T_{h}$
A refrigerator (reverse heat engine) uses work W to extract heat Q_{c} from cold and deposit heat Q_{h} at hot temp. Coefficient of performance: $\mathrm{COP}=Q_{c} / W \leq \mathrm{COP}_{\text {Carnot }}=T_{c} /\left(T_{h}-T_{c}\right)$
Entropy measures disorder in a system: $\Delta S=\int_{1}^{2}(d Q / T)$; For adiabatic free expansion $\Delta S=$ $n R \ln \left(V_{2} / V_{1}\right)$; for heating from T_{1} to $T_{2}, \Delta S=m c \ln \left(T_{2} / T_{1}\right)$; for other processes (e.g. constant volume or pressure) use integral formula, with $Q \rightarrow d Q$ and $\Delta T \rightarrow d T$

Gauss law: $\oint \vec{E} \cdot d \vec{A}=q / \epsilon_{0}$; Faraday law: $\oint \vec{E} \cdot d \vec{l}=-d \phi_{B} / d t$; Ampere law: $\oint \vec{B} \cdot d \vec{l}=\mu_{0} I+$ $\mu_{0} \epsilon_{0} d \phi_{E} / d t ; \phi_{E}=\int \vec{E} \cdot d \vec{A} ; \phi_{B}=\int \vec{B} \cdot d \vec{A} ;$ Displacement current: $\epsilon_{0} d \phi_{E} / d t$
Electromagnetic plane wave in x direction: $E=\hat{j} E_{0} \sin (k x-\omega t) ; B=\hat{k} B_{0} \sin (k x-\omega t) ; c=\omega / k$; $E=c B$; Intensity $\left(\mathrm{W} / \mathrm{m}^{2}\right): \bar{S}=\overline{E B} / \mu_{0}=E_{p} B_{p} /\left(2 \mu_{0}\right)$; for spherical wave: $S=P /\left(4 \pi r^{2}\right)$; for polarization at angle $\theta: S=S_{0} \cos ^{2} \theta$; Radiation pressure: $P_{r a d}=\bar{S} / c$

Reflection: $\theta_{\text {incidence }}=\theta_{\text {reflection }}$
Refraction: Snell law: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}, n$ is index of refraction; $v_{\text {light }}=c / n$;
Total internal reflection critical angle: $\sin \theta_{c}=n_{2} / n_{1}$; Polarizing Brewster angle: $\tan \theta_{p}=n_{2} / n_{1}$
Lens/Mirror equation: $\frac{1}{l}+\frac{1}{l^{\prime}}=\frac{1}{f}, f$ is focal length; Magnification is $M=h^{\prime} / h=-l^{\prime} / l ; h^{\prime}$ negative means inverted image; l^{\prime} negative means virtual image; f negative means concave (dispersing).
Curved interface of radius R between materials with n_{1} and $n_{2}: n_{1} / l+n_{2} / l^{\prime}=\left(n_{2}-n_{1}\right) / R$ Lensmaker formula: $\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$; for spherical mirror: $f=R / 2$

Double slit spectrograph: bright fringes $d \sin \theta=m \lambda$, dark fringes $d \sin \theta=\left(m+\frac{1}{2}\right) \lambda, m=0,1,2, \cdots$ $y_{\text {bright }}=m \lambda L / d, y_{\text {dark }}=\left(m+\frac{1}{2}\right) \lambda L / d$
Multiple slit with N slits (diffraction grating): maxima: $d \sin \theta=m \lambda, m=0,1,2, \cdots$
minima: $d \sin \theta=m \lambda / N, m=1,2, \ldots, N-1$
Thin film interference: 180° phase shift for reflection from lower n_{1} off higher n_{2}; otherwise no phase shift. From air to material: constructive interference: $2 n d=\left(m+\frac{1}{2}\right) \lambda$; destructive: $2 n d=m \lambda$

