Constants and Factors

Speed of light: c = 299,792,458 m/s exactly (about 3×10^8 meters/sec)

 $\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}; \mu_0 = 4\pi \times 10^{-7} \text{H/m}; c = 1/\sqrt{(\epsilon_0\mu_0)}$ Newton's constant $G = 6.67 \times 10^{-11} \text{ m}^3/\text{s}^2 \text{ kg};$ Earth's surface $g = 9.8 \text{m/s}^2$ Mass of proton and neutron about $1.67 \times 10^{-27} \text{ kg}$ Mass of electron: $m_e = 9.11 \times 10^{-31} \text{kg}$ Standard air pressure: $P_0 = 1.01 \times 10^5 \text{N/m}^2 = 1$ Atmosphere Speed of sound: in Air: 343 m/s, in Water: 1500 m/s, in Steel: 5940 m/sDensity of air: 1.2 kg/m^3 ; of water: 1000 kg/m^3 Specific Heats (in kcal/(kg ^0C) or Btu/(lb ^0F)): water: 1, ice: 0.49, wood: 0.33, stone: 0.20, iron: 0.107, glass: 0.033Energy Units: 1 kcal = $4184 \text{ Joule} = 3.97 \text{ Btu}; 1 \text{ kWh} = <math>3.6 \times 10^6 \text{J}; 1 \text{ Btu/hr} = 0.293 \text{ Watt}$ Boltzman constant $k = 1.38 \times 10^{-23} \text{ J/K}$, Universal gas constant R=8.314 J/(K mol)Avagadro's number $N_A = 6.022 \times 10^{23}$ molecules/mole Heat of transformation for Water (kJ/kg): melting: 334, vaporization: 2257Conversions: meter = 3.28 ft; meter³ = 1000 liters Index of refraction: air: $1.0003 \ (\approx 1.0)$, water: 1.333, ice: 1.309, glass: 1.5, diamond: 2.419

Formulas from Physics 2A

Velocity, position, acceleration: $\vec{v} = d\vec{r}/dt$, acceleration $\vec{a} = d\vec{v}/dt$; $\vec{v} = \vec{v}_0 + \vec{a}t$, and $\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2}\vec{a}t^2$ Circular motion: $a = v^2/r$; Newton's acceleration law: $\vec{F} = d\vec{p}/dt = m\vec{a}$; Weight: $\vec{W} = m\vec{g}$

Formulas for Physics 2C

Wave velocity: $v = \lambda/T = f\lambda$, with wavelength λ ; period T; frequency f = 1/TSimple harmonic wave: $y(x,t) = A\cos(kx \pm \omega t)$, with displacement of the medium y; amplitude of wave A; wave number $k = 2\pi/\lambda$; angular frequency $\omega = 2\pi f$. Wave speed is $v = \omega/k$. Small amplitude wave on a stretched spring has speed: $v = \sqrt{F/\mu}$ with F the string tension and μ

Small amplitude wave on a stretched spring has speed: $v = \sqrt{F/\mu}$ with F the string tension and μ the mass per unit length of the string.

Average wave power on a string: $\bar{P} = \frac{1}{2}\mu\omega^2 A^2 v = \frac{1}{2}F\omega kA^2$

Wave intensity is power per unit area carried by wave. For 3-D waves $I = P/(4\pi R^2)$, with P total power, and R distance from source of wave.

Linear wave equation: $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$

Speed of sound in gas: $v = \sqrt{\gamma P_0/\rho}$, where P_0 is the gas pressure, ρ is the density, and $\gamma = 5/3$ in monatomic gases like Helium and $\gamma = 7/5$ in diatomic gases like air; speed of sound in air: 343 m/s Speed of sound in solid: $v = \sqrt{B/\rho}$, where $B = -\Delta P/(\Delta V/V)$ is the bulk modulus of elasticity Average intensity of sound: $\bar{I} = \frac{1}{2}\Delta P_0^2/(\rho v) = \frac{1}{2}\rho\omega^2 s_0^2 v$, where ΔP_0 is the pressure amplitude and s_0 is the displacement amplitude

Sound is sometimes measured in decibels: $\beta = 10 \log \left(\frac{I}{I_0}\right)$, where $I_0 = 10^{-12} \text{W/m}^2$

Standing waves have formula: $y(x,t) = 2A\sin(kx)\sin(\omega t)$; for strings: ends clamped (ends nodes) $L = n\lambda/2$ with n and integer.

Doppler shift in sound from moving source: $f' = f/(1 \pm u/v)$ for source moving away (+) or towards (-) observer, where v is sound speed and u is source speed

For moving observer: $f' = f(1 \pm u/v)$ for observer moving towards(+) or away (-)

Hydrostatic equilibrium: no net force on any fluid element: pressure is $P = P_0 + \rho gh$, with P_0 surface pressure, ρ density, and h the depth in liquid.

Archimedes' principle: Buoyancy force is equal to the weight of the fluid displaced by the object Continuity equation (conservation of mass): $\rho vA = \text{constant}$ along a flow tube (A area, v velocity) Bernoulli's equation (conservation of energy): $P + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}$ along a flow tube

Temperature scales: $T_{Celsius} = T_{Kelvin} - 273.15$ and $T_{Fahrenheit} = \frac{9}{5}T_{Celsius} + 32$ $\Delta Q = C\Delta T$, where ΔQ is heat transferred, ΔT is temperature change, and C is the heat capacity of the object.

Also $\Delta Q = cm\Delta T$, where c is the *specific* heat of the object, and m is the mass

Heat flow rate (in J/s): $H = -kA(\Delta T/\Delta x)$, k is thermal conductivity (in W/m K), A is area Heat flow rate (in Btu/hr): $H = A\Delta T/R$, where R Factor: $R = \Delta x/k$ (in ft²F⁰ hr/Btu) Stefan-Boltzmann radiation law: Power radiated is $P = e\sigma AT^4$, where e is emmisivity, $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \cdot K^4$, T is temp in Kelvins, A surface area of object

Ideal gas law PV = NkT; PV = nRT, with N number of molecules and n number of moles. Maxwell-Boltzmann distribution: $dN = (dN/dv)dv = 4\pi N(m/(2\pi kT))^{3/2}v^2 \exp\left[-mv^2/2kT\right]dv$ RMS speed of molecule in gas is given by: $\frac{1}{2}m\bar{v}^2 = \frac{3}{2}kT$ Thermal expansion coefficients: Linear $\Delta L = \alpha L \Delta T$, Volume $\Delta V = \beta V \Delta T$, where $\beta = 3\alpha$ Heat of transformation: Q = Lm, with L heat of fusion, vaporization, etc. and m mass

First law of thermodynamics: $\Delta U = Q - W$, ΔU is change of internal energy, Q is heat into system and work done by system is $W = \int_{V_1}^{V_2} P dV$; ideal gas: $U = nc_V T$ *Processes: Isothermal:* Q = W, $W = nRT \ln (V_2/V_1)$; PV = constant*Constant volume:* $Q = \Delta U$; W = 0; $Q = nc_V \Delta T$, C_V specific heat at constant volume *Isobaric:* $W = P(V_2 - V_1)$; $Q = nC_P \Delta T$; C_P specific heat constant pressure; $C_P = C_V + R$; *Adiabatic:* Q = 0; $(\Delta U = -W)$: $W = (P_1V_1 - P_2V_2)/(\gamma - 1)$; $PV^{\gamma} = \text{constant}$; $\gamma = C_P/C_V$ Degrees-of-freedom (dof): Monatomic has 3, diatomic has 5, triatomic has 6; $C_V = (\text{dof})\frac{1}{2}R$

Heat engine working in cycle has efficiency $\epsilon = W/Q_h = 1 - Q_c/Q_h$; For reversible processes: $Q_c/Q_h = T_c/T_h$ and efficiency is called Carnot efficiency: $\epsilon \leq \epsilon_{Carnot} = 1 - T_c/T_h$

A refrigerator (reverse heat engine) uses work W to extract heat Q_c from cold and deposit heat Q_h at hot temp. Coefficient of performance: $\text{COP} = Q_c/W \leq \text{COP}_{Carnot} = T_c/(T_h - T_c)$

Entropy measures disorder in a system: $\Delta S = \int_1^2 (dQ/T)$; For adiabatic free expansion $\Delta S = nR \ln(V_2/V_1)$; for heating from T_1 to T_2 , $\Delta S = mc \ln(T_2/T_1)$; for other processes (e.g. constant volume or pressure) use integral formula, with $Q \to dQ$ and $\Delta T \to dT$

Gauss law: $\oint \vec{E} \cdot d\vec{A} = q/\epsilon_0$; Faraday law: $\oint \vec{E} \cdot d\vec{l} = -d\phi_B/dt$; Ampere law: $\oint \vec{B} \cdot d\vec{l} = \mu_0 I + \mu_0 \epsilon_0 d\phi_E/dt$; $\phi_E = \int \vec{E} \cdot d\vec{A}$; $\phi_B = \int \vec{B} \cdot d\vec{A}$; Displacement current: $\epsilon_0 d\phi_E/dt$ Electromagnetic plane wave in x direction: $E = \hat{j}E_0 \sin(kx - \omega t)$; $B = \hat{k}B_0 \sin(kx - \omega t)$; $c = \omega/k$; E = cB; Intensity (W/m²): $\bar{S} = E\bar{B}/\mu_0 = E_p B_p/(2\mu_0)$; for spherical wave: $S = P/(4\pi r^2)$; for polarization at angle θ : $S = S_0 \cos^2 \theta$; Radiation pressure: $P_{rad} = \bar{S}/c$

Reflection: $\theta_{\text{incidence}} = \theta_{\text{reflection}}$

Refraction: Snell law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$, *n* is index of refraction; $v_{\text{light}} = c/n$; Total internal reflection critical angle: $\sin \theta_c = n_2/n_1$; Polarizing Brewster angle: $\tan \theta_p = n_2/n_1$

Lens/Mirror equation: $\frac{1}{l} + \frac{1}{l'} = \frac{1}{f}$, f is focal length; Magnification is M = h'/h = -l'/l; h' negative means inverted image; l' negative means virtual image; f negative means concave (dispersing). Curved interface of radius R between materials with n_1 and n_2 : $n_1/l + n_2/l' = (n_2 - n_1)/R$ Lensmaker formula: $\frac{1}{f} = (n-1)(\frac{1}{R_1} - \frac{1}{R_2})$; for spherical mirror: f = R/2

Double slit spectrograph: bright fringes $d \sin \theta = m\lambda$, dark fringes $d \sin \theta = (m + \frac{1}{2})\lambda$, $m = 0, 1, 2, \cdots$ $y_{bright} = m\lambda L/d$, $y_{dark} = (m + \frac{1}{2})\lambda L/d$ Multiple glit with N glits (diffusion grating): maxima: $d \sin \theta = m\lambda$, m = 0, 1, 2.

Multiple slit with N slits (diffraction grating): maxima: $d\sin\theta = m\lambda$, $m = 0, 1, 2, \cdots$ minima: $d\sin\theta = m\lambda/N$, $m = 1, 2, \dots, N - 1$

Thin film interference: 180⁰ phase shift for reflection from lower n_1 off higher n_2 ; otherwise no phase shift. From air to material: constructive interference: $2nd = (m + \frac{1}{2})\lambda$; destructive: $2nd = m\lambda$