PHYSICS 140A : STATISTICAL PHYSICS
 FINAL EXAMINATION SOLUTIONS

100 POINTS TOTAL
(1) Consider a system of N independent, distinguishable $S=1$ objects, each described by the Hamiltonian

$$
\hat{h}=\Delta S^{2}-\mu_{0} \mathrm{H} S,
$$

where $S \in\{-1,0,1\}$.
(a) Find $F(T, \mathrm{H}, N)$.
[10 points]
(b) Find the magnetization $M(T, H, N)$.
[5 points]
(c) Find the zero field susceptibility, $\chi(T)=\left.\frac{1}{N} \frac{\partial M}{\partial \mathrm{H}}\right|_{\mathrm{H}=0}$.
[5 points]
(d) Find the zero field entropy $S(T, \mathrm{H}=0, N)$. (Hint : Take $\mathrm{H} \rightarrow 0$ first.)
[5 points]

Solution : The partition function is $Z=\zeta^{N}$, where ζ is the single particle partition function,

$$
\begin{equation*}
\zeta=\operatorname{Tr} e^{-\beta \hat{h}}=1+2 e^{-\Delta / k_{\mathrm{B}} T} \cosh \left(\frac{\mu_{0} \mathrm{H}}{k_{\mathrm{B}} T}\right) . \tag{1}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\text { (a) } F=-N k_{\mathrm{B}} T \ln \zeta=-N k_{\mathrm{B}} T \ln \left[1+2 e^{-\Delta / k_{\mathrm{B}} T} \cosh \left(\frac{\mu_{0} \mathrm{H}}{k_{\mathrm{B}} T}\right)\right] \tag{2}
\end{equation*}
$$

The magnetization is

$$
\begin{equation*}
\text { (b) } M=-\frac{\partial F}{\partial \mathrm{H}}=\frac{k_{\mathrm{B}} T}{Z} \cdot \frac{\partial Z}{\partial \mathrm{H}}=\frac{2 \mu_{0} \sinh \left(\frac{\mu_{0} \mathrm{H}}{k_{\mathrm{B}} T}\right)}{e^{\Delta / k_{\mathrm{B}} T}+2 \cosh \left(\frac{\mu_{0} \mathrm{H}}{k_{\mathrm{B}} T}\right)} \tag{3}
\end{equation*}
$$

To find the zero field susceptibility, we expand M to linear order in H , which entails expanding the numerator of M to first order in H and setting $\mathrm{H}=0$ in the denominator. We then find

$$
\begin{equation*}
\text { (c) } \chi(T)=\frac{2 \mu_{0}^{2}}{k_{\mathrm{B}} T} \cdot \frac{1}{e^{\Delta / k_{\mathrm{B}} T}+2} \tag{4}
\end{equation*}
$$

To find the entropy in zero field, it is convenient to set $\mathrm{H} \rightarrow 0$ first. The free energy is then given by $F(T, \mathrm{H}=0, N)=-N k_{\mathrm{B}} T \ln \left(1+2 e^{-\Delta / k_{\mathrm{B}} T}\right)$, and therefore

$$
\begin{equation*}
\text { (d) } S=-\frac{\partial F}{\partial T}=N k_{\mathrm{B}} \ln \left(1+2 e^{-\Delta / k_{\mathrm{B}} T}\right)+\frac{N \Delta}{T} \cdot \frac{1}{2+e^{\Delta / k_{\mathrm{B}} T}} \tag{5}
\end{equation*}
$$

(2) A classical gas consists of particles of two species: A and B. The dispersions for these species are

$$
\varepsilon_{\mathrm{A}}(\boldsymbol{p})=\frac{\boldsymbol{p}^{2}}{2 m} \quad, \quad \varepsilon_{\mathrm{B}}(\boldsymbol{p})=\frac{\boldsymbol{p}^{2}}{4 m}-\Delta .
$$

In other words, $m_{\mathrm{A}}=m$ and $m_{\mathrm{B}}=2 m$, and there is an additional energy offset $-\Delta$ associated with the B species.
(a) Find the grand potential $\Omega\left(T, V, \mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right)$.
[10 points]
(b) Find the number densities $n_{\mathrm{A}}\left(T, \mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right)$ and $n_{\mathrm{B}}\left(T, \mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right)$.
[5 points]
(c) If $2 \mathrm{~A} \rightleftharpoons \mathrm{~B}$ is an allowed reaction, what is the relation between n_{A} and n_{B} ?
(Hint: What is the relation between μ_{A} and μ_{B} ?)
[5 points]
(d) Suppose initially that $n_{\mathrm{A}}=n$ and $n_{\mathrm{B}}=0$. Find n_{A} in equilibrium, as a function of T and n and constants.
[5 points]

Solution: The grand partition function Ξ is a product of contributions from the A and B species, and the grand potential is a sum:

$$
\begin{equation*}
\text { (a) } \Omega=-V k_{\mathrm{B}} T \lambda_{T}^{-3} e^{\mu_{\mathrm{A}} / k_{\mathrm{B}} T}-2^{3 / 2} V k_{\mathrm{B}} T \lambda_{T}^{-3} e^{\left(\mu_{\mathrm{B}}+\Delta\right) / k_{\mathrm{B}} T} \tag{6}
\end{equation*}
$$

Here, we have defined the thermal wavelength for the A species as $\lambda_{T} \equiv \lambda_{T, \mathrm{~A}}=\sqrt{2 \pi \hbar^{2} / m k_{\mathrm{B}} T}$. For the B species, since the mass is twice as great, we have $\lambda_{T, \mathrm{~B}}=2^{-1 / 2} \lambda_{T, \mathrm{~A}}$.

The number densities are

$$
\begin{align*}
& n_{\mathrm{A}}=-\frac{1}{V} \cdot \frac{\partial \Omega}{\partial \mu_{\mathrm{A}}}=V \lambda_{T}^{-3} e^{\mu_{\mathrm{A}} / k_{\mathrm{B}} T} \tag{7}\\
& n_{\mathrm{B}}=-\frac{1}{V} \cdot \frac{\partial \Omega}{\partial \mu_{\mathrm{B}}}=2^{3 / 2} V \lambda_{T}^{-3} e^{\left(\mu_{\mathrm{B}}+\Delta\right) / k_{\mathrm{B}} T} . \tag{8}
\end{align*}
$$

If the reaction $2 \mathrm{~A} \rightleftharpoons \mathrm{~B}$ is allowed, then the chemical potentials of the A and B species are related by $\mu_{\mathrm{B}}=2 \mu_{\mathrm{A}} \equiv 2 \mu$. We then have

$$
\begin{equation*}
\text { (b) } n_{\mathrm{A}} \lambda_{T}^{3}=e^{\mu / k_{\mathrm{B}} T} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { (b) } n_{\mathrm{B}} \lambda_{T}^{3}=2^{3 / 2} e^{(2 \mu+\Delta) / k_{\mathrm{B}} T} \tag{10}
\end{equation*}
$$

The relation we seek is therefore

$$
\begin{equation*}
\text { (c) } n_{\mathrm{B}}=2^{3 / 2}\left(n_{\mathrm{A}} \lambda_{T}^{3}\right)^{2} e^{\Delta / k_{\mathrm{B}} T} \tag{11}
\end{equation*}
$$

If we initially have $n_{\mathrm{A}}=n$ and $n_{\mathrm{B}}=0$, then in general we must have

$$
\begin{equation*}
n_{\mathrm{A}}+2 n_{\mathrm{B}}=n \quad \Longrightarrow \quad n_{\mathrm{B}}=\frac{1}{2}\left(n-n_{\mathrm{A}}\right) . \tag{12}
\end{equation*}
$$

Thus, eliminating n_{B}, we have a quadratic equation,

$$
\begin{equation*}
2^{3 / 2} \lambda_{T}^{3} e^{\Delta / k_{\mathrm{B}} T} n_{\mathrm{A}}^{2}=\frac{1}{2}\left(n-n_{\mathrm{A}}\right), \tag{13}
\end{equation*}
$$

the solution of which is

$$
\begin{equation*}
\text { (d) } n_{\mathrm{A}}=\frac{-1+\sqrt{1+16 \sqrt{2} n \lambda_{T}^{3} e^{\Delta / k_{\mathrm{B}} T}}}{8 \sqrt{2} \lambda_{T}^{3} e^{\Delta / k_{\mathrm{B}} T}} \tag{14}
\end{equation*}
$$

(3) A branch of excitations for a three-dimensional system has a dispersion $\varepsilon(\boldsymbol{k})=A|\boldsymbol{k}|^{2 / 3}$. The excitations are bosonic and are not conserved; they therefore obey photon statistics.
(a) Find the single excitation density of states per unit volume, $g(\varepsilon)$. You may assume that there is no internal degeneracy for this excitation branch.
[10 points]
(b) Find the heat capacity $C_{V}(T, V)$.
[5 points]
(c) Find the ratio $E / p V$.
[5 points]
(d) If the particles are bosons with number conservation, find the critical temperature T_{c} for Bose-Einstein condensation.
[5 points]

Solution : We have, for three-dimensional systems,

$$
\begin{equation*}
g(\varepsilon)=\frac{1}{2 \pi^{2}} \frac{k^{2}}{d \varepsilon / d k}=\frac{3}{4 \pi^{2} A} k^{7 / 3} . \tag{15}
\end{equation*}
$$

Inverting the dispersion to give $k(\varepsilon)=(\varepsilon / A)^{3 / 2}$, we obtain

$$
\begin{equation*}
\text { (a) } g(\varepsilon)=\frac{3}{4 \pi^{2}} \frac{\varepsilon^{7 / 2}}{A^{9 / 2}} \tag{16}
\end{equation*}
$$

The energy is then

$$
\begin{align*}
E & =V \int_{0}^{\infty} d \varepsilon g(\varepsilon) \frac{\varepsilon}{e^{\varepsilon / k_{\mathrm{B}} T}-1} \\
& =\frac{3 V}{4 \pi^{2}} \Gamma\left(\frac{11}{2}\right) \zeta\left(\frac{11}{2}\right) \frac{\left(k_{\mathrm{B}} T\right)^{11 / 2}}{A^{9 / 2}} . \tag{17}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\text { (b) } C_{V}=\left(\frac{\partial E}{\partial T}\right)_{V}=\frac{3 V}{4 \pi^{2}} \Gamma\left(\frac{13}{2}\right) \zeta\left(\frac{11}{2}\right) k_{\mathrm{B}}\left(\frac{k_{\mathrm{B}} T}{A}\right)^{9 / 2} \tag{18}
\end{equation*}
$$

The pressure is

$$
\begin{align*}
p=-\frac{\Omega}{V} & =-k_{\mathrm{B}} T \int_{0}^{\infty} d \varepsilon g(\varepsilon) \ln \left(1-e^{-\varepsilon / k_{\mathrm{B}} T}\right) \tag{19}\\
& =-k_{\mathrm{B}} T \int_{0}^{\infty} d \varepsilon \frac{3}{4 \pi^{2}} \frac{\varepsilon^{7 / 2}}{A^{9 / 2}} \ln \left(1-e^{-\varepsilon / k_{\mathrm{B}} T}\right) \\
& =-\frac{3}{4 \pi^{2}} \frac{\left(k_{\mathrm{B}} T\right)^{11 / 2}}{A^{9 / 2}} \int_{0}^{\infty} d s s^{7 / 2} \ln \left(1-e^{-s}\right) \\
& =\frac{3 V}{4 \pi^{2}} \Gamma\left(\frac{9}{2}\right) \zeta\left(\frac{11}{2}\right) \frac{\left(k_{\mathrm{B}} T\right)^{11 / 2}}{A^{9 / 2}} . \tag{20}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\text { (c) } \frac{E}{p V}=\frac{\Gamma\left(\frac{11}{2}\right)}{\Gamma\left(\frac{9}{2}\right)}=\frac{9}{2} \tag{21}
\end{equation*}
$$

To find T_{c} for BEC, we set $z=1$ (i.e. $\mu=0$) and $n_{0}=0$, and obtain

$$
\begin{equation*}
n=\int_{0}^{\infty} d \varepsilon g(\varepsilon) \frac{\varepsilon}{e^{\varepsilon / k_{\mathrm{B}} T_{\mathrm{c}}}-1} \tag{22}
\end{equation*}
$$

Substituting in our form for $g(\varepsilon)$, we obtain

$$
\begin{equation*}
n=\frac{3}{4 \pi^{2}} \Gamma\left(\frac{9}{2}\right) \zeta\left(\frac{9}{2}\right)\left(\frac{k_{\mathrm{B}} T}{A}\right)^{9 / 2}, \tag{23}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\text { (d) } T_{\mathrm{c}}=\frac{A}{k_{\mathrm{B}}}\left(\frac{4 \pi^{2} n}{3 \Gamma\left(\frac{9}{2}\right) \zeta\left(\frac{9}{2}\right)}\right)^{2 / 9} \tag{24}
\end{equation*}
$$

(4) Short answers:
(a) What are the conditions for a dynamical system to exhibit Poincaré recurrence? [3 points]
The time evolution of the dynamics must be invertible and volume-preserving on a phase space of finite total volume. For $\dot{\varphi}=\boldsymbol{X}(\boldsymbol{\varphi})$ this requires that the phase space divergence vanish: $\boldsymbol{\nabla} \cdot \boldsymbol{X}=0$.
(b) Describe what the term ergodic means in the context of a dynamical system.
[3 points]
Ergodicity means that time averages may be replaced by phase space averages, i.e. $\langle f(\boldsymbol{\varphi})\rangle_{T}=\langle f(\boldsymbol{\varphi})\rangle_{S}$, where

$$
\begin{align*}
\langle f(\boldsymbol{\varphi})\rangle_{T} & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t f(\boldsymbol{\varphi}(t)) \tag{25}\\
\langle f(\boldsymbol{\varphi})\rangle_{S} & =\int d \mu \varrho(\boldsymbol{\varphi}) f(\boldsymbol{\varphi}) \tag{26}
\end{align*}
$$

where $\varrho(\varphi)$ is a phase space distribution. For the microcanonical ensemble,

$$
\begin{equation*}
\varrho(\boldsymbol{\varphi})=\frac{\delta(E-H(\boldsymbol{\varphi}))}{\int d \mu \delta(E-H(\boldsymbol{\varphi}))}, \tag{27}
\end{equation*}
$$

(c) What is the microcanonical ensemble? [3 points]

The microcanonical ensemble is defined by the phase space probability distribution $\varrho(\boldsymbol{\varphi})=\delta(E-H(\boldsymbol{\varphi}))$, which says that all states that lie on the same constant energy hypersurface in phase space are equally likely.
(d) A system with $L=6$ single particle levels contains $N=3$ bosons. How many distinct many-body states are there? [3 points]
The general result for bosons is $\Omega_{\mathrm{BE}}(L, N)=\binom{N+L-1}{N}$, so we have $\Omega=\binom{8}{3}=56$.
(e) A system with $L=6$ single particle levels contains $N=3$ fermions. How many distinct many-body states are there? [3 points]
The general result for bosons is $\Omega_{\mathrm{FD}}(L, N)=\binom{L}{N}$, so we have $\Omega=\binom{6}{3}=20$.
(f) Explain how the Maxwell-Boltzmann limit results, starting from the expression for $\Omega_{\mathrm{BE} / \mathrm{FD}}(T, V, \mu)$. [3 points]
We have

$$
\begin{equation*}
\Omega_{\mathrm{BE} / \mathrm{FD}}= \pm k_{\mathrm{B}} T \sum_{\alpha} \ln \left(1 \mp z e^{-\varepsilon_{\alpha} / k_{\mathrm{B}} T}\right) . \tag{28}
\end{equation*}
$$

The MB limit occurs when the product $z e^{-\varepsilon_{\alpha} / k_{\mathrm{B}} T} \ll 1$, in which case

$$
\begin{equation*}
\Omega_{\mathrm{BE} / \mathrm{FD}} \longrightarrow \Omega_{\mathrm{MB}}=-k_{\mathrm{B}} T \sum_{\alpha} e^{\left(\mu-\varepsilon_{\alpha}\right) / k_{\mathrm{B}} T} \tag{29}
\end{equation*}
$$

where the sum is over all energy eigenstates of the single particle Hamiltonian.
(g) For the Dieterici equation of state, $p(1-b n)=n k_{\mathrm{B}} T \exp \left(-a n / k_{\mathrm{B}} T\right)$, find the second virial coefficient $B_{2}(T)$. [3 points]
We must expand in powers of the density n :

$$
\begin{align*}
p & =n k_{\mathrm{B}} T \frac{e^{-a n / k_{\mathrm{B}} T}}{1-b n}=n k_{\mathrm{B}} T\left(1-\frac{a n}{k_{\mathrm{B}} T}+\ldots\right)(1+b n+\ldots) \\
& =n k_{\mathrm{B}} T+\left(b k_{\mathrm{B}} T-a\right) n^{2}+\mathcal{O}\left(n^{3}\right) \tag{30}
\end{align*}
$$

The virial expansion of the equation of state is

$$
\begin{equation*}
p=n k_{\mathrm{B}} T\left(1+B_{2}(T)+B_{3}(T) n^{2}+\ldots\right), \tag{31}
\end{equation*}
$$

and so we identify

$$
\begin{equation*}
B_{2}(T)=b-\frac{a}{k_{\mathrm{B}} T} . \tag{32}
\end{equation*}
$$

(h) Explain the difference between the Einstein and Debye models for the specific heat of a solid. [4 points]
The Einstein model assumes a phonon density of states $g(\varepsilon)=\mathcal{C}_{\mathrm{E}} \delta\left(\varepsilon-\varepsilon_{0}\right)$, while for the Debye model one has $g(\varepsilon)=\mathcal{C}_{\mathrm{D}} \varepsilon^{2} \Theta\left(\varepsilon_{\mathrm{D}}-\varepsilon\right)$, where $C_{\mathrm{E}, \mathrm{D}}$ are constants, and ε_{D} is a cutoff known as the Debye energy. At high temperatures, both models yield a Dulong-Petit heat capacity of $3 N k_{\mathrm{B}}$, where N is the number of atoms in the solid. At low temperatures, however, the Einstein model yields an exponentially suppressed specific heat, while the specific heat of the Debye model obeys a T^{3} power law.
(i) Who composed the song yerushalayim shel zahav? [50 quatloos extra credit] The song was composed by Naomi Shemer in 1967. In 2005, it was revealed that it was based in part on a Basque folk song.

