
PHYSICS 140A : STATISTICAL PHYSICS

FINAL EXAMINATION SOLUTIONS

Instructions: Do problem 4 (34 points) and any two of problems 1, 2, and 3 (33 points each)

(1) A noninteracting system consists of N dimers. Each dimer consists of two spins, S and σ,
where S ∈ {−1, 0,+1} and σ ∈ {−1,+1}. The Hamiltonian is

Ĥ = −J
N
∑

i=1

Si σi − µ0H
N
∑

i=1

Si .

Thus, the individual dimer Hamiltonian is ĥ = −JSσ − µ0HS.

(a) Find the N -dimer free energy F (T,N).

(b) Find the average 〈S〉 and the zero field susceptibility χ
S(T ) =

∂〈S〉
∂H

∣

∣

∣

H=0
.

(c) Find the average 〈σ〉 and the zero field susceptibility χ
σ(T ) =

∂〈σ〉
∂H

∣

∣

∣

H=0
.

(d) Examine the J → 0 limits of χS(T ) and χ
σ(T ) and interpret your results physically.

Solution :

(a) There are six energy states for each dimer, listed in Tab. 1

S σ ĥ(S, σ) S σ ĥ(S, σ)

+1 +1 −J − µ0H +1 −1 J − µ0H

0 +1 0 0 −1 0

−1 +1 +J + µ0H −1 −1 −J + µ0H

Table 1: Energy table for problem 1.

Thus, the single dimer partition function is

ζ = Tr e−βĥ = eβJeβµ0
H + 1 + e−βJe−βµ

0
H + e−βJeβµ0

H + 1 + eβJe−βµ
0
H

= 2 + 4 cosh(βµ0J) cosh(βµ0H) .

For N noninteracting dimers, Z = ζN (the dimers are regarded as distinguishable). Thus,

F (T,N) = −Nk
B
T ln

(

2 + 4 cosh
(

J/k
B
T
)

cosh
(

µ0H/k
B
T
)

)

(b) We have

〈S〉 =
Tr S e−βĥ(S,σ)

Tr e−βĥ(S,σ)
=

eβJeβµ0
H − e−βJe−βµ

0
H + e−βJeβµ0

H − eβJe−βµ
0
H

2 + 4 cosh(βJ) cosh(βH)
,
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so

〈S〉 =
cosh(J/k

B
T ) sinh(µ0H/k

B
T )

cosh(J/k
B
T ) cosh(µ0H/k

B
T ) + 1

2

Expanding to linear order in H and taking the coefficient, we have

χ
S(T ) =

∂〈S〉

∂H

∣

∣

∣

H=0
=

cosh
(

J/k
B
T
)

cosh
(

J/k
B
T
)

+ 1
2

·
µ0

k
B
T

Note that usually we define χ = ∂M
∂T with M = µ0 〈S〉, so our result above differs by a factor of µ0.

(c) We have

〈σ〉 =
Tr σ e−βĥ(S,σ)

Tr e−βĥ(S,σ)
=

eβJeβµ0
H + e−βJe−βµ

0
H − e−βJeβµ0

H − eβJe−βµ
0
H

2 + 4 cosh(βJ) cosh(βH)
,

so

〈σ〉 =
sinh(J/k

B
T ) sinh(µ0H/k

B
T )

cosh(J/k
B
T ) cosh(µ0H/k

B
T ) + 1

2

Expanding to linear order in H and taking the coefficient, we have

χ
σ(T ) =

∂〈σ〉

∂H

∣

∣

∣

H=0
=

sinh
(

J/k
B
T
)

cosh
(

J/k
B
T
)

+ 1
2

·
µ0

k
B
T

(d) As J → 0 we have

χ
S(T, J = 0) =

2µ0

3k
B
T

, χ
σ(T, J = 0) = 0

The physical interpretation of these results is as follows. When J = 0, the individual dimer
Hamiltonian is ĥ = −µ0HS. The factor of 2

3 in χ
S is due to the fact that S = 0 in 1

3 of the states.
The σ spins don’t couple to the field at all in this limit, so χ

σ = 0.

(2) Recall that a van der Waals gas obeys the equation of state

(

p+
a

v2

)

(

v − b
)

= RT ,

where v is the molar volume. We showed that the energy per mole of such a gas is given by

ε(T, v) = 1
2fRT −

a

v
,

where T is temperature and f is the number of degrees of freedom per particle.
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A

B

C
D

Figure 1: The Carnot cycle.

(a) For an ideal gas, the adiabatic equation of state is
v T f/2 = const. Find the adiabatic equation of state (at
fixed particle number) for the van der Waals gas.

(b) One mole of a van der Waals gas is used as the working
substance in a Carnot engine (see Fig. 1). Find the molar
volume at vC in terms of vB , T1 , T2 , and constants.

(c) Find the heat QAB absorbed by the gas from the upper
reservoir.

(d) Find the work done per cycle, Wcyc. Hint: you only need
to know QAB and the cycle efficiency η.

Solution :

(a) We have

0 = T ds = dε+ p dv

= 1
2fRdT +

(

p+
a

v2

)

dv

= 1
2fRdT +

RT dv

v − b
= 1

2fRT d ln
[

(v − b)T f/2
]

,

where s = NAS/N is the molar entropy. Thus, the adiabatic equation of state for the van der Waals
gas is

ds = 0 ⇒ (v − b)T f/2 = const.

Setting b = 0, we recover the ideal gas result.

(b) Since BC is an adiabat, we have

(vB − b)T
f/2
2 = (vC − b)T

f/2
1 ⇒ vC = b+ (vB − b)

(

T2

T1

)f/2

(c) We have, from the First Law,

QAB = EB − EA +WAB

= ν

(

a

vA
−

a

vB

)

+ ν

v
B
∫

v
A

dv p

= ν

(

a

vA
−

a

vB

)

+ ν

v
B
∫

v
A

dv

[

RT2

v − b
−

a

v2

]

,
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hence

QAB = νRT2 ln

(

vB − b

vA − b

)

with ν = 1.

(d) Since the cycle is reversible, we must have

η =
Wcyc

QAB

⇒ Wcyc = νR(T2 − T1) ln

(

vB − b

vA − b

)

(3) In homework assignment #9, you showed that the grand partition function for a gas of q-state
parafermions is

Ξ(T, V, µ) =
∏

α

(

1− e(q+1)(µ−ε
α
)/k

B
T

1− e(µ−ε
α
)/k

B
T

)

,

where the product is over all single particle states. Consider now the case where the number of
parafermions is not conserved, hence µ = 0. We call such particles paraphotons.

(a) What is the occupancy n(ε, T ) of q-state paraphotons of energy ε?

(b) Suppose the dispersion is the usual ε(k) = ~ck. Assuming g = 1, find the single particle
density of states g(ε) in three space dimensions.

(c) Find the pressure p(T ). You may find the following useful:

∞
∫

0

dt
tr−1

et − 1
= Γ(r) ζ(r) ,

∞
∫

0

dt tr−1 ln

(

1

1− e−t

)

= Γ(r) ζ(r + 1) .

(d) Show that p = Cq nkB
T , where n is the number density, and Cq is a dimensionless constant

which depends only on q.

Solution :

(a) For µ 6= 0, for a single parafermion state, we have

n = −
∂Ω

∂µ
=

1

β

∂ lnΞ

∂µ

=
1

eβ(ε−µ) − 1
−

q + 1

e(q+1)β(ε−µ) − 1
.

Setting µ = 0, we find

n(ε, T ) =
1

eε/kBT − 1
−

q + 1

e(q+1) ε/k
B
T − 1
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(b) With g = 1, we have

g(ε) dε =
d3k

(2π)3
=

k2 dk

2π2
⇒ g(ε) =

k2

2π2

dk

dε
=

ε2

2π2(~c)3

(c) The pressure is

p = −
Ω

V
= k

B
T

∞
∫

0

dε g(ε)
{

ln
(

1− e−(q+1)ε/k
B
T
)

− ln
(

1− e−ε/k
B
T
)

}

=
k
B
T

2π2(~c)3

∞
∫

0

dε ε2
{

ln
(

1− e−(q+1)ε/k
B
T
)

− ln
(

1− e−ε/k
B
T
)

}

=
ζ(4) (k

B
T )4

π2(~c)3
·

(

1−
1

(q + 1)3

)

.

Thus,

p(T ) =
(

1− (q + 1)−3
)

·
ζ(4) (k

B
T )4

π2(~c)3

(d) We need to evaluate

n =

∞
∫

0

dε g(ε)

{

1

eε/kBT − 1
−

q + 1

e(q+1) ε/k
B
T − 1

}

=
1

2π2(~c)3

∞
∫

0

dε ε2

{

1

eε/kBT − 1
−

q + 1

e(q+1) ε/k
B
T − 1

}

=
(

1− (q + 1)−2
)

·
ζ(3) (k

B
T )3

π2(~c)3

From this we derive

Cq =
p

nk
B
T

=
ζ(4)

ζ(3)
·
q2 + 3q + 3

q2 + 3q + 2

(4) Provide brief but substantial answers to the following:

(a) A particle in d = 3 dimensions has the dispersion ε(k) = ε0 exp(ka). Find the density of states
per unit volume g(ε). Sketch your result.

(b) Find the information entropy in the distribution pn = C e−λn, where n ∈ {0, 1, 2, . . .}. Choose
C so as to normalize the distribution.

5



(c) An ideal gas at temperature T = 300K undergoes an adiabatic free expansion which results in
a doubling of its volume. What is the final temperature?

(d) For an N -particle noninteracting system, sketch the contributions ∆CV to the heat capacity
versus temperature for (i) a vibrational mode at energy ~ω0, and (ii) a two-level (Schottky) defect
with energy splitting ∆ = ε1 − ε0. Take care to identify any relevant characteristic temperatures,
as well as the limiting values of ∆CV .

Solution :

Figure 2: DOS for problem 4.a.

(a) Inverting the dispersion relation, we obtain the expres-
sion k(ε) = a−1 ln

(

ε/ε0
)

Θ(ε− ε0). We then have

g(ε) =
k2

2π

dk

dε
=

k2

2π
·

1

aε0e
ak

.

Thus,

g(ε) =
1

2π2a3
1

ε
ln2
(

ε

ε0

)

Θ(ε− ε0)

The result is plotted in Fig. 2.

(b) Normalizing the distribution,

1 =
∞
∑

n=0

pn = C
∞
∑

n=0

e−nλ =
C

1− e−λ
,

hence C = 1− e−λ. The information entropy is

S = −
∞
∑

n=0

pn ln pn = − ln
(

1− e−λ
)

+ Cλ
∞
∑

n=0

n e−λn .

Now

f(λ) =

∞
∑

n=0

e−nλ =
1

1− e−λ
⇒

∞
∑

n=0

n e−nλ = −
df

dλ
=

1

(eλ − 1)(1 − e−λ)
.

Thus, the information entropy is

S(λ) =
λ

eλ − 1
− ln

(

1− e−λ
)

.

Note that S(λ → 0) ∼ 1 − lnλ which diverges logarithmically with 1/λ. This is approaching the
uniform distribution. For λ → ∞, we have pn = δn,0, and S(λ → ∞) = 0.

(c) Under an adiabatic free expansion, ∆E = Q = W = 0 with N conserved. Since E = 1
2fNk

B
T

is independent of volume for the ideal gas, there is no change in temperature, i.e.

Tfinal = Tinitial = 100K
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Figure 3: Heat capacities for a N identical vibrational modes (left) and Schottky defects (right).

(d) The characteristic temperatures for the vibrational mode (vibron) and Schottky defect are given
by Θ = ~ω0/kB

and Θ = ∆/k
B

, respectively. A detailed derivation of the heat capacity for these
systems is provided in §§ 4.10.5-6 of the Lecture Notes. One finds

∆CV = Nk
B

(

Θ

T

)2 eΘ/T

(eΘ/T ∓ 1)2
,

where the top sign is for the vibron and the bottom sign for the Schottky defect. All you were
asked to do, however, was to provide a sketch (see Fig. 3). The T → ∞ limit of the vibron result is
given by the Dulong-Petit value of k

B
per oscillator mode. For the Schottky defect, ∆CV vanishes

in both the T → 0 and T → ∞ limits.

(5) Write a well-defined expression for the greatest possible number expressible using only five
symbols. Examples: 1 + 2 + 3 , 10100 , Γ(99). [50 quatloos extra credit]

Solution :

Using conventional notation, my best shot would be

99
9
9
9

This is a very big number indeed: 99 ≈ 3.7 × 108, so 99
9

∼ 103.5×108 , and 99
9
9
9

∼ 1010
10

3.7×10
8

.
But in the world of big numbers, this is still tiny. For a fun diversion, use teh google to learn
about the Ackermann sequence and Knuth’s up-arrow notation. Using Knuth’s notation (see
http://en.wikipedia.org/wiki/Knuth’s up-arrow notation), one could write 9 ↑99 9, which
is vastly larger. But even these numbers are modest compared with something called the ”Busy
Beaver sequence”, which is a concept from computer science and Turing machines. For a very en-
gaging essay on large numbers, see http://www.scottaaronson.com/writings/bignumbers.html.
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