PHYSICS 140A : STATISTICAL PHYSICS
 FINAL EXAMINATION SOLUTIONS

Instructions: Do problem 4 (34 points) and any two of problems 1, 2, and 3 (33 points each)
(1) A noninteracting system consists of N dimers. Each dimer consists of two spins, S and σ, where $S \in\{-1,0,+1\}$ and $\sigma \in\{-1,+1\}$. The Hamiltonian is

$$
\hat{H}=-J \sum_{i=1}^{N} S_{i} \sigma_{i}-\mu_{0} H \sum_{i=1}^{N} S_{i} .
$$

Thus, the individual dimer Hamiltonian is $\hat{h}=-J S \sigma-\mu_{0} H S$.
(a) Find the N-dimer free energy $F(T, N)$.
(b) Find the average $\langle S\rangle$ and the zero field susceptibility $\chi_{S}(T)=\left.\frac{\partial\langle S\rangle}{\partial H}\right|_{H=0}$.
(c) Find the average $\langle\sigma\rangle$ and the zero field susceptibility $\chi_{\sigma}(T)=\left.\frac{\partial\langle\sigma\rangle}{\partial H}\right|_{H=0}$.
(d) Examine the $J \rightarrow 0$ limits of $\chi_{S}(T)$ and $\chi_{\sigma}(T)$ and interpret your results physically.

Solution :
(a) There are six energy states for each dimer, listed in Tab. 1

S	σ	$\hat{h}(S, \sigma)$	S	σ	$\hat{h}(S, \sigma)$
+1	+1	$-J-\mu_{0} H$	+1	-1	$J-\mu_{0} H$
0	+1	0	0	-1	0
-1	+1	$+J+\mu_{0} H$	-1	-1	$-J+\mu_{0} H$

Table 1: Energy table for problem 1.

Thus, the single dimer partition function is

$$
\begin{aligned}
\zeta=\operatorname{Tr} e^{-\beta \hat{h}} & =e^{\beta J} e^{\beta \mu_{0} H}+1+e^{-\beta J} e^{-\beta \mu_{0} H}+e^{-\beta J} e^{\beta \mu_{0} H}+1+e^{\beta J} e^{-\beta \mu_{0} H} \\
& =2+4 \cosh \left(\beta \mu_{0} J\right) \cosh \left(\beta \mu_{0} H\right) .
\end{aligned}
$$

For N noninteracting dimers, $Z=\zeta^{N}$ (the dimers are regarded as distinguishable). Thus,

$$
F(T, N)=-N k_{\mathrm{B}} T \ln \left(2+4 \cosh \left(J / k_{\mathrm{B}} T\right) \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)\right)
$$

(b) We have

$$
\langle S\rangle=\frac{\operatorname{Tr} S e^{-\beta \hat{h}(S, \sigma)}}{\operatorname{Tr} e^{-\beta \hat{h}(S, \sigma)}}=\frac{e^{\beta J} e^{\beta \mu_{0} H}-e^{-\beta J} e^{-\beta \mu_{0} H}+e^{-\beta J} e^{\beta \mu_{0} H}-e^{\beta J} e^{-\beta \mu_{0} H}}{2+4 \cosh (\beta J) \cosh (\beta H)},
$$

so

$$
\langle S\rangle=\frac{\cosh \left(J / k_{\mathrm{B}} T\right) \sinh \left(\mu_{0} H / k_{\mathrm{B}} T\right)}{\cosh \left(J / k_{\mathrm{B}} T\right) \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)+\frac{1}{2}}
$$

Expanding to linear order in H and taking the coefficient, we have

$$
\chi_{S}(T)=\left.\frac{\partial\langle S\rangle}{\partial H}\right|_{H=0}=\frac{\cosh \left(J / k_{\mathrm{B}} T\right)}{\cosh \left(J / k_{\mathrm{B}} T\right)+\frac{1}{2}} \cdot \frac{\mu_{0}}{k_{\mathrm{B}} T}
$$

Note that usually we define $\chi=\frac{\partial M}{\partial T}$ with $M=\mu_{0}\langle S\rangle$, so our result above differs by a factor of μ_{0}.
(c) We have

$$
\langle\sigma\rangle=\frac{\operatorname{Tr} \sigma e^{-\beta \hat{h}(S, \sigma)}}{\operatorname{Tr} e^{-\beta \hat{h}(S, \sigma)}}=\frac{e^{\beta J} e^{\beta \mu_{0} H}+e^{-\beta J} e^{-\beta \mu_{0} H}-e^{-\beta J} e^{\beta \mu_{0} H}-e^{\beta J} e^{-\beta \mu_{0} H}}{2+4 \cosh (\beta J) \cosh (\beta H)},
$$

so

$$
\langle\sigma\rangle=\frac{\sinh \left(J / k_{\mathrm{B}} T\right) \sinh \left(\mu_{0} H / k_{\mathrm{B}} T\right)}{\cosh \left(J / k_{\mathrm{B}} T\right) \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)+\frac{1}{2}}
$$

Expanding to linear order in H and taking the coefficient, we have

$$
\chi_{\sigma}(T)=\left.\frac{\partial\langle\sigma\rangle}{\partial H}\right|_{H=0}=\frac{\sinh \left(J / k_{\mathrm{B}} T\right)}{\cosh \left(J / k_{\mathrm{B}} T\right)+\frac{1}{2}} \cdot \frac{\mu_{0}}{k_{\mathrm{B}} T}
$$

(d) As $J \rightarrow 0$ we have

$$
\chi_{S}(T, J=0)=\frac{2 \mu_{0}}{3 k_{\mathrm{B}} T} \quad, \quad \chi_{\sigma}(T, J=0)=0
$$

The physical interpretation of these results is as follows. When $J=0$, the individual dimer Hamiltonian is $\hat{h}=-\mu_{0} H S$. The factor of $\frac{2}{3}$ in χ_{S} is due to the fact that $S=0$ in $\frac{1}{3}$ of the states. The σ spins don't couple to the field at all in this limit, so $\chi_{\sigma}=0$.
(2) Recall that a van der Waals gas obeys the equation of state

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=R T
$$

where v is the molar volume. We showed that the energy per mole of such a gas is given by

$$
\varepsilon(T, v)=\frac{1}{2} f R T-\frac{a}{v}
$$

where T is temperature and f is the number of degrees of freedom per particle.
(a) For an ideal gas, the adiabatic equation of state is $v T^{f / 2}=$ const. Find the adiabatic equation of state (at fixed particle number) for the van der Waals gas.
(b) One mole of a van der Waals gas is used as the working substance in a Carnot engine (see Fig. 1). Find the molar volume at v_{C} in terms of $v_{\mathrm{B}}, T_{1}, T_{2}$, and constants.
(c) Find the heat Q_{AB} absorbed by the gas from the upper reservoir.
(d) Find the work done per cycle, $W_{\text {cyc }}$. Hint: you only need to know Q_{AB} and the cycle efficiency η.

Figure 1: The Carnot cycle.

Solution :
(a) We have

$$
\begin{aligned}
0=T d s & =d \varepsilon+p d v \\
& =\frac{1}{2} f R d T+\left(p+\frac{a}{v^{2}}\right) d v \\
& =\frac{1}{2} f R d T+\frac{R T d v}{v-b}=\frac{1}{2} f R T d \ln \left[(v-b) T^{f / 2}\right],
\end{aligned}
$$

where $s=N_{\mathrm{A}} S / N$ is the molar entropy. Thus, the adiabatic equation of state for the van der Waals gas is

$$
d s=0 \quad \Rightarrow \quad(v-b) T^{f / 2}=\text { const. }
$$

Setting $b=0$, we recover the ideal gas result.
(b) Since $B C$ is an adiabat, we have

$$
\left(v_{\mathrm{B}}-b\right) T_{2}^{f / 2}=\left(v_{\mathrm{C}}-b\right) T_{1}^{f / 2} \Rightarrow v_{\mathrm{C}}=b+\left(v_{\mathrm{B}}-b\right)\left(\frac{T_{2}}{T_{1}}\right)^{f / 2}
$$

(c) We have, from the First Law,

$$
\begin{aligned}
Q_{\mathrm{AB}} & =E_{\mathrm{B}}-E_{\mathrm{A}}+W_{\mathrm{AB}} \\
& =\nu\left(\frac{a}{v_{\mathrm{A}}}-\frac{a}{v_{\mathrm{B}}}\right)+\nu \int_{v_{\mathrm{A}}}^{v_{\mathrm{B}}} d v p \\
& =\nu\left(\frac{a}{v_{\mathrm{A}}}-\frac{a}{v_{\mathrm{B}}}\right)+\nu \int_{v_{\mathrm{A}}}^{v_{\mathrm{B}}} d v\left[\frac{R T_{2}}{v-b}-\frac{a}{v^{2}}\right]
\end{aligned}
$$

hence

$$
Q_{\mathrm{AB}}=\nu R T_{2} \ln \left(\frac{v_{\mathrm{B}}-b}{v_{\mathrm{A}}-b}\right)
$$

with $\nu=1$.
(d) Since the cycle is reversible, we must have

$$
\eta=\frac{W_{\mathrm{cyc}}}{Q_{\mathrm{AB}}} \Rightarrow \quad W_{\mathrm{cyc}}=\nu R\left(T_{2}-T_{1}\right) \ln \left(\frac{v_{\mathrm{B}}-b}{v_{\mathrm{A}}-b}\right)
$$

(3) In homework assignment \#9, you showed that the grand partition function for a gas of q-state parafermions is

$$
\Xi(T, V, \mu)=\prod_{\alpha}\left(\frac{1-e^{(q+1)\left(\mu-\varepsilon_{\alpha}\right) / k_{\mathrm{B}} T}}{1-e^{\left(\mu-\varepsilon_{\alpha}\right) / k_{\mathrm{B}} T}}\right),
$$

where the product is over all single particle states. Consider now the case where the number of parafermions is not conserved, hence $\mu=0$. We call such particles paraphotons.
(a) What is the occupancy $n(\varepsilon, T)$ of q-state paraphotons of energy ε ?
(b) Suppose the dispersion is the usual $\varepsilon(\boldsymbol{k})=\hbar c k$. Assuming $\mathrm{g}=1$, find the single particle density of states $g(\varepsilon)$ in three space dimensions.
(c) Find the pressure $p(T)$. You may find the following useful:

$$
\int_{0}^{\infty} d t \frac{t^{r-1}}{e^{t}-1}=\Gamma(r) \zeta(r) \quad, \quad \int_{0}^{\infty} d t t^{r-1} \ln \left(\frac{1}{1-e^{-t}}\right)=\Gamma(r) \zeta(r+1)
$$

(d) Show that $p=C_{q} n k_{\mathrm{B}} T$, where n is the number density, and C_{q} is a dimensionless constant which depends only on q.

Solution :
(a) For $\mu \neq 0$, for a single parafermion state, we have

$$
\begin{aligned}
n & =-\frac{\partial \Omega}{\partial \mu}=\frac{1}{\beta} \frac{\partial \ln \Xi}{\partial \mu} \\
& =\frac{1}{e^{\beta(\varepsilon-\mu)}-1}-\frac{q+1}{e^{(q+1) \beta(\varepsilon-\mu)}-1} .
\end{aligned}
$$

Setting $\mu=0$, we find

$$
n(\varepsilon, T)=\frac{1}{e^{\varepsilon / k_{\mathrm{B}} T}-1}-\frac{q+1}{e^{(q+1) \varepsilon / k_{\mathrm{B}} T}-1}
$$

(b) With $\mathrm{g}=1$, we have

$$
g(\varepsilon) d \varepsilon=\frac{d^{3} k}{(2 \pi)^{3}}=\frac{k^{2} d k}{2 \pi^{2}} \Rightarrow g(\varepsilon)=\frac{k^{2}}{2 \pi^{2}} \frac{d k}{d \varepsilon}=\frac{\varepsilon^{2}}{2 \pi^{2}(\hbar c)^{3}}
$$

(c) The pressure is

$$
\begin{aligned}
p=-\frac{\Omega}{V} & =k_{\mathrm{B}} T \int_{0}^{\infty} d \varepsilon g(\varepsilon)\left\{\ln \left(1-e^{-(q+1) \varepsilon / k_{\mathrm{B}} T}\right)-\ln \left(1-e^{-\varepsilon / k_{\mathrm{B}} T}\right)\right\} \\
& =\frac{k_{\mathrm{B}} T}{2 \pi^{2}(\hbar c)^{3}} \int_{0}^{\infty} d \varepsilon \varepsilon^{2}\left\{\ln \left(1-e^{-(q+1) \varepsilon / k_{\mathrm{B}} T}\right)-\ln \left(1-e^{-\varepsilon / k_{\mathrm{B}} T}\right)\right\} \\
& =\frac{\zeta(4)\left(k_{\mathrm{B}} T\right)^{4}}{\pi^{2}(\hbar c)^{3}} \cdot\left(1-\frac{1}{(q+1)^{3}}\right) .
\end{aligned}
$$

Thus,

$$
p(T)=\left(1-(q+1)^{-3}\right) \cdot \frac{\zeta(4)\left(k_{\mathrm{B}} T\right)^{4}}{\pi^{2}(\hbar c)^{3}}
$$

(d) We need to evaluate

$$
\begin{aligned}
n & =\int_{0}^{\infty} d \varepsilon g(\varepsilon)\left\{\frac{1}{e^{\varepsilon / k_{\mathrm{B}} T}-1}-\frac{q+1}{e^{(q+1) \varepsilon / k_{\mathrm{B}} T}-1}\right\} \\
& =\frac{1}{2 \pi^{2}(\hbar c)^{3}} \int_{0}^{\infty} d \varepsilon \varepsilon^{2}\left\{\frac{1}{e^{\varepsilon / k_{\mathrm{B}} T}-1}-\frac{q+1}{e^{(q+1) \varepsilon / k_{\mathrm{B}} T}-1}\right\} \\
& =\left(1-(q+1)^{-2}\right) \cdot \frac{\zeta(3)\left(k_{\mathrm{B}} T\right)^{3}}{\pi^{2}(\hbar c)^{3}}
\end{aligned}
$$

From this we derive

$$
C_{q}=\frac{p}{n k_{\mathrm{B}} T}=\frac{\zeta(4)}{\zeta(3)} \cdot \frac{q^{2}+3 q+3}{q^{2}+3 q+2}
$$

(4) Provide brief but substantial answers to the following:
(a) A particle in $d=3$ dimensions has the dispersion $\varepsilon(\boldsymbol{k})=\varepsilon_{0} \exp (k a)$. Find the density of states per unit volume $g(\varepsilon)$. Sketch your result.
(b) Find the information entropy in the distribution $p_{n}=C e^{-\lambda n}$, where $n \in\{0,1,2, \ldots\}$. Choose C so as to normalize the distribution.
(c) An ideal gas at temperature $T=300 \mathrm{~K}$ undergoes an adiabatic free expansion which results in a doubling of its volume. What is the final temperature?
(d) For an N-particle noninteracting system, sketch the contributions ΔC_{V} to the heat capacity versus temperature for (i) a vibrational mode at energy $\hbar \omega_{0}$, and (ii) a two-level (Schottky) defect with energy splitting $\Delta=\varepsilon_{1}-\varepsilon_{0}$. Take care to identify any relevant characteristic temperatures, as well as the limiting values of ΔC_{V}.

Solution :

(a) Inverting the dispersion relation, we obtain the expression $k(\varepsilon)=a^{-1} \ln \left(\varepsilon / \varepsilon_{0}\right) \Theta\left(\varepsilon-\varepsilon_{0}\right)$. We then have

$$
g(\varepsilon)=\frac{k^{2}}{2 \pi} \frac{d k}{d \varepsilon}=\frac{k^{2}}{2 \pi} \cdot \frac{1}{a \varepsilon_{0} e^{a k}} .
$$

Thus,

$$
g(\varepsilon)=\frac{1}{2 \pi^{2} a^{3}} \frac{1}{\varepsilon} \ln ^{2}\left(\frac{\varepsilon}{\varepsilon_{0}}\right) \Theta\left(\varepsilon-\varepsilon_{0}\right)
$$

The result is plotted in Fig. 2.
(b) Normalizing the distribution,

Figure 2: DOS for problem 4.a.

$$
1=\sum_{n=0}^{\infty} p_{n}=C \sum_{n=0}^{\infty} e^{-n \lambda}=\frac{C}{1-e^{-\lambda}},
$$

hence $C=1-e^{-\lambda}$. The information entropy is

$$
S=-\sum_{n=0}^{\infty} p_{n} \ln p_{n}=-\ln \left(1-e^{-\lambda}\right)+C \lambda \sum_{n=0}^{\infty} n e^{-\lambda n} .
$$

Now

$$
f(\lambda)=\sum_{n=0}^{\infty} e^{-n \lambda}=\frac{1}{1-e^{-\lambda}} \Rightarrow \sum_{n=0}^{\infty} n e^{-n \lambda}=-\frac{d f}{d \lambda}=\frac{1}{\left(e^{\lambda}-1\right)\left(1-e^{-\lambda}\right)} .
$$

Thus, the information entropy is

$$
S(\lambda)=\frac{\lambda}{e^{\lambda}-1}-\ln \left(1-e^{-\lambda}\right) .
$$

Note that $S(\lambda \rightarrow 0) \sim 1-\ln \lambda$ which diverges logarithmically with $1 / \lambda$. This is approaching the uniform distribution. For $\lambda \rightarrow \infty$, we have $p_{n}=\delta_{n, 0}$, and $S(\lambda \rightarrow \infty)=0$.
(c) Under an adiabatic free expansion, $\Delta E=Q=W=0$ with N conserved. Since $E=\frac{1}{2} f N k_{\mathrm{B}} T$ is independent of volume for the ideal gas, there is no change in temperature, i.e.

$$
T_{\text {final }}=T_{\text {initial }}=100 \mathrm{~K}
$$

Figure 3: Heat capacities for a N identical vibrational modes (left) and Schottky defects (right).
(d) The characteristic temperatures for the vibrational mode (vibron) and Schottky defect are given by $\Theta=\hbar \omega_{0} / k_{\mathrm{B}}$ and $\Theta=\Delta / k_{\mathrm{B}}$, respectively. A detailed derivation of the heat capacity for these systems is provided in $\S \S 4.10 .5-6$ of the Lecture Notes. One finds

$$
\Delta C_{V}=N k_{\mathrm{B}}\left(\frac{\Theta}{T}\right)^{2} \frac{e^{\Theta / T}}{\left(e^{\Theta / T} \mp 1\right)^{2}},
$$

where the top sign is for the vibron and the bottom sign for the Schottky defect. All you were asked to do, however, was to provide a sketch (see Fig. 3). The $T \rightarrow \infty$ limit of the vibron result is given by the Dulong-Petit value of k_{B} per oscillator mode. For the Schottky defect, ΔC_{V} vanishes in both the $T \rightarrow 0$ and $T \rightarrow \infty$ limits.
(5) Write a well-defined expression for the greatest possible number expressible using only five symbols. Examples: $1+2+3,10^{100}, \Gamma(99)$. [50 quatloos extra credit]

Solution :

Using conventional notation, my best shot would be

$$
\begin{array}{|c|}
9^{9^{9^{9^{9}}}} \\
\hline
\end{array}
$$

This is a very big number indeed: $9^{9} \approx 3.7 \times 10^{8}$, so $9^{9^{9}} \sim 10^{3.5 \times 10^{8}}$, and $9^{9^{9^{9^{9}}}} \sim 10^{10^{10^{3.7}}}{ }^{10^{8}}$. But in the world of big numbers, this is still tiny. For a fun diversion, use teh google to learn about the Ackermann sequence and Knuth's up-arrow notation. Using Knuth's notation (see http://en.wikipedia.org/wiki/Knuth's_up-arrow_notation), one could write $9 \uparrow^{99} 9$, which is vastly larger. But even these numbers are modest compared with something called the "Busy Beaver sequence", which is a concept from computer science and Turing machines. For a very engaging essay on large numbers, see http://www.scottaaronson.com/writings/bignumbers.html.

