
PHYSICS 140A : STATISTICAL PHYSICS

HW #9 SOLUTIONS

(1) Consider a three-dimensional gas of noninteracting quantum particles with dispersion
ε(k) = A |k|3/2.

(a) Find the single particle density of states per unit volume g(ε).

(b) Find expressions for n(T, z) and p(T, z), each expressed as power series in the fugac-
ity z, for both Bose-Einstein and Fermi-Dirac statistics.

(c) Find the virial expansion for the equation of state up to terms of order n3, for both
bosons and fermions.

Solution :

(a) The density of states for dispersion ε(k) = A |k|σ is

g(ε) = g

∫

ddk

(2π)d
δ
(

ε − Akσ
)

=
gΩd

(2π)d

∞
∫

0

dk kd−1 δ
(

k − (ε/A)1/σ
)

σAkσ−1
= D ε

d

σ
−1 ,

with

D =
2g

(2
√

π)d σΓ(d/2)
A−d/σ .

(b) We have

n(T, z) =
∞
∑

j=1

(±1)j−1 Cj(T ) zj

p(T, z) = k
B
T

∞
∑

j=1

(±1)j−1 zj j−1 Cj(T ) zj ,

where

Cj(T ) =

∞
∫

−∞

dε g(ε) e−jε/k
B

T = D Γ(d/σ)

(

k
B
T

j

)d/σ

.

Thus, we have

±nvT =
∞

∑

j=1

j−r (±z)j

± pvT /k
B
T =

∞
∑

j=1

j−(r+1) (±z)j ,
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where r = d/σ and

vT =
1

D Γ(d/σ) (k
B
T )d/σ

=
(2
√

π)dσ Γ(d/2)

2gD Γ(d/σ)

(

A

k
B
T

)d/σ

.

has dimensions of volume.

(c) We now let x = ±z, and interrogate Mathematica:

In[1]= y = InverseSeries [ x + x^2/2^r + x^3/3^r + x^4/4^r + O[x]^5 ]

In[2]= w = y + y^2/2^(r+1) + y^3/3^(r+1) + y^4/4^(r+1) + O[y]^5 .

The result is
p = nk

B
T

[

1 + B2(T )n + B3(T )n2 + . . .
]

,

where

B2(T ) = ∓2−(r+1) vT

B3(T ) =
(

2−2r − 2 · 3−(r+1)
)

v2
T

B4(T ) = ±2−(3r+1) 31−r
(

22r+1 − 5 · 3r−1 − 2r−1 3r
)

v3
T .

Substitute σ = 3
2 to find the solution for the conditions given.

(2) You know that at most one fermion may occupy any given single-particle state. A
parafermion is a particle for which the maximum occupancy of any given single-particle
state is k, where k is an integer greater than zero. (For k = 1, parafermions are regular
everyday fermions; for k = ∞, parafermions are regular everyday bosons.) Consider
a system with one single-particle level whose energy is ε, i.e. the Hamiltonian is simply
H = εn, where n is the particle number.

(a) Compute the partition function Ξ(µ, T ) in the grand canonical ensemble for parafermions.

(b) Compute the occupation function n(µ, T ). What is n when µ = −∞? When µ = ε?
When µ = +∞? Does this make sense? Show that n(µ, T ) reduces to the Fermi and
Bose distributions in the appropriate limits.

(c) Sketch n(µ, T ) as a function of µ for both T = 0 and T > 0.
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Figure 1: k = 3 parafermion occupation number versus ε − µ for kBT = 0, kBT = 0.25,
kBT = 0.5, and kBT = 1. (Problem 2b)

Solution:

The general expression for Ξ is

Ξ =
∏

α

∑

nα

(

z e−βεα

)nα .

Now the sum on n runs from 0 to k, and

k
∑

n=0

xn =
1 − xk+1

1 − x
.

(a) Thus,

Ξ =
1 − e(k+1)β(µ−ε)

1 − eβ(µ−ε)
.

(b) We then have

n = −∂Ω

∂µ
=

1

β

∂ ln Ξ

∂µ

=
1

eβ(ε−µ) − 1
− k + 1

e(k+1)β(ε−µ) − 1

(c) A plot of n(ε, T, µ) for k = 3 is shown in Fig. 1. Qualitatively the shape is that of the
Fermi function f(ε − µ). At T = 0, the occupation function is n(ε, T = 0, µ) = k Θ(µ − ε).
This step function smooths out for T finite.

3



(d) For each k < ∞, the occupation number n(z, T ) is a finite order polynomial in z, and
hence an analytic function of z. Therefore, there is no possibility for Bose condensation
except for k = ∞.

(3) A gas of quantum particles with photon statistics has dispersion ε(k) = A |k|4.

(a) Find the single particle density of states per unit volume g(ε).

(b) Repeat the arguments of §5.5.2 in the Lecture Notes for this dispersion.

(c) Assuming our known values for the surface temperature of the sun, the radius of the
earth-sun orbit, and the radius of the earth, what would you expect the surface tem-
perature of the earth to be if the sun radiated particles with this dispersion instead of
photons?

Solution :

(a) See the solution to part (a) of problem 1 above. For d = 3 and σ = 4 we have

g(ε) =
g

2π2
A−3/4 ε−1/4 .

(b) Scaling volume by λ scales the lengths by λ1/3, the quantized wavevectors by λ−1/3,
and the energy eigenvalues by λ−4/3, since ε ∝ k4. Thus,

p = −
(

∂E

∂V

)

S

=
4E

3V
,

which says
(

∂E

∂V

)

T

= T

(

∂p

∂T

)

V

− p = 3
4 p ⇒ p(T ) = B T 7/4 .

Indeed,

p(T ) = −k
B
T

∞
∫

−∞

g(ε) ln
(

1 − e−ε/k
B

T
)

= − g

2π2 A3/4
(k

B
T )7/4

∞
∫

−∞

du u−1/4 ln(1 − e−u) .

(c) See §5.5.5 of the Lecture Notes. Assume a dispersion of the form ε(k) for the (non-
conserved) bosons. Then the energy current incident on a differential area dA of surface
normal to ẑ is

dP = dA ·
∫

d3k

(2π)3
Θ(cos θ) · ε(k) · 1

~

∂ε(k)

∂kz

· 1

eε(k)/k
B

T − 1
.
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Note that
∂ε(k)

∂kz

=
kz

k

∂ε

∂k
= cos θ ε′(k) .

Now let us assume a power law dispersion ε(k) = Akα. Changing variables to t =
Akα/k

B
T , we find

dP

dA
= σ T 2+ 2

α ,

where

σ = ζ
(

2 + 2
α

)

Γ
(

2 + 2
α

)

· g k
2+ 2

α

B A−
2

α

8π2~
.

One can check that for g = 2, A = ~c, and α = 1 that this result reduces to Stefan’s Law.

Equating the power incident on the earth to that radiated by the earth,

4πR2
⊙ · σT

2(1+α−1)
⊙ · πR2

e

4πa2
e

= 4πR2
e · σT 2(1+α−1)

e ,

which yields

Te =

(

R⊙

2ae

)
α

α+1

T⊙ .

Plugging in the appropriate constants and setting α = 4, we obtain Te = 45.2K. Brrr!
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