PHYSICS 140A : STATISTICAL PHYSICS
 HW ASSIGNMENT \#6 SOLUTIONS

(1) A substance obeys the thermodynamic relation $E=a S^{4} / V N^{2}$.
(a) Compute the heat capacity $C_{V, N}$ in terms of N, V, and T.
(b) Compute the equation of state relating p, V, N, and T.
(c) Compute the ratio $C_{\varphi, N} / C_{V, N}$, where $C_{\varphi, N}$ is the heat capacity at constant φ and N, with $\varphi=V^{2} / T$.

Solution :
(a) We have

$$
T=\left.\frac{\partial E}{\partial S}\right|_{V, N}=\frac{4 a S^{3}}{V N^{2}} \quad \Rightarrow \quad S=\left(\frac{T V N^{2}}{4 a}\right)^{1 / 3} .
$$

Plugging this into the expression for $E(S, V, N)$, we obtain

$$
E(T, V, N)=\frac{1}{4}(4 a)^{-1 / 3} T^{4 / 3} V^{1 / 3} N^{2 / 3},
$$

and hence

$$
C_{V, N}=\left.\frac{\partial E}{\partial T}\right|_{V, N}=\frac{1}{3}(4 a)^{-1 / 3} T^{1 / 3} V^{1 / 3} N^{2 / 3} .
$$

(b) We have $T(S, V, N)$ and so we must find $p(S, V, N)$ and then eliminate S. Thus,

$$
p=-\left.\frac{\partial E}{\partial V}\right|_{S, N}=\frac{a S^{4}}{V^{2} N^{2}}=\frac{1}{4}(4 a)^{-1 / 3} T^{4 / 3} V^{-2 / 3} N^{2 / 3}
$$

Cubing this result eliminates the fractional powers, yielding the equation of state

$$
256 a p^{3} V^{2}=N^{2} T^{4}
$$

Note also that $E=p V$ and $C_{V, N}=4 p V / 3 T$.
(d) We have $d E=d Q-p d V$, so

$$
đ Q=d E+p d V=C_{V, N} d T+\left\{\left(\frac{\partial E}{\partial V}\right)_{T, N}+p\right\} d V
$$

Now we need to compute $\left.d V\right|_{\varphi, N}$. We write

$$
d \varphi=-\frac{V^{2}}{T^{2}} d T+\frac{2 V}{T} d V
$$

hence

$$
\left.d V\right|_{\varphi, N}=\frac{V}{2 T} d T
$$

Substituting this into our expression for $đ Q$, we have

$$
C_{\varphi, N}=C_{V, N}+\left\{\left(\frac{\partial E}{\partial V}\right)_{T, N}+p\right\} \frac{V}{2 T} .
$$

It is now left to us to compute

$$
\left(\frac{\partial E}{\partial V}\right)_{T, N}=\frac{1}{12}(4 a)^{-1 / 3} T^{4 / 3} V^{-2 / 3} N^{2 / 3}=\frac{1}{3} p .
$$

We then have

$$
C_{\varphi, N}=C_{V, N}+\frac{2 p V}{3 T}=\frac{3}{2} C_{V, N} .
$$

Thus,

$$
\frac{C_{\varphi, N}}{C_{V, N}}=\frac{3}{2} .
$$

(2) Consider an engine cycle which follows the thermodynamic path in Fig. 1. The work material is ν moles of a diatomic ideal gas. BC is an isobar $(d p=0)$, CA is an isochore ($d V=0$), and along AB one has

$$
p(V)=p_{\mathrm{B}}+\left(p_{\mathrm{A}}-p_{\mathrm{B}}\right) \cdot \sqrt{\frac{V_{\mathrm{B}}-V}{V_{\mathrm{B}}-V_{\mathrm{A}}}} .
$$

Figure 1: Thermodynamic path for problem 2.
(a) Find the heat acquired Q_{AB} and the work done W_{AB}.
(b) Find the heat acquired Q_{BC} and the work done W_{BC}.
(c) Find the heat acquired $Q_{\text {CA }}$ and the work done W_{CA}.
(d) Find the work W done per cycle.

Solution :

Note that $p_{\mathrm{C}}=p_{\mathrm{B}}$ and $V_{\mathrm{C}}=V_{\mathrm{A}}$, so we will only need to use $\left\{p_{\mathrm{A}}, p_{\mathrm{B}}, V_{\mathrm{A}}, V_{\mathrm{B}}\right\}$ in our analysis. For a diatomic ideal gas, $E=\frac{5}{2} p V$.
(a) We first compute the work done along AB. Let's define u such that $V=V_{\mathrm{A}}+\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right) u$. Then along AB we have $p=p_{\mathrm{B}}+\left(p_{\mathrm{A}}-p_{\mathrm{B}}\right) \sqrt{1-u}$, and

$$
\begin{aligned}
W_{\mathrm{AB}} & =\int_{\mathrm{A}}^{\mathrm{B}} d V p \\
& =\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right) \int_{0}^{1} d u\left\{p_{\mathrm{B}}+\left(p_{\mathrm{A}}-p_{\mathrm{B}}\right) \sqrt{1-u}\right\} \\
& =p_{\mathrm{B}}\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right)+\frac{2}{3}\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right)\left(p_{\mathrm{A}}-p_{\mathrm{B}}\right) .
\end{aligned}
$$

The change in energy along $A B$ is

$$
(\Delta E)_{\mathrm{AB}}=E_{\mathrm{B}}-E_{\mathrm{A}}=\frac{5}{2}\left(p_{\mathrm{B}} V_{\mathrm{B}}-p_{\mathrm{A}} V_{\mathrm{A}}\right),
$$

hence

$$
\begin{aligned}
Q_{\mathrm{AB}} & =(\Delta E)_{\mathrm{AB}}+W_{\mathrm{AB}} \\
& =\frac{5}{6} p_{\mathrm{B}} V_{\mathrm{B}}-\frac{19}{6} p_{\mathrm{A}} V_{\mathrm{A}}+\frac{2}{3} p_{\mathrm{A}} V_{\mathrm{B}}+\frac{5}{3} p_{\mathrm{B}} V_{\mathrm{A}} .
\end{aligned}
$$

(b) Along BC we have

$$
\begin{aligned}
W_{\mathrm{BC}} & =p_{\mathrm{B}}\left(V_{\mathrm{A}}-V_{\mathrm{B}}\right) \\
(\Delta E)_{\mathrm{BC}} & =\frac{5}{2} p_{\mathrm{B}}\left(V_{\mathrm{A}}-V_{\mathrm{B}}\right) \\
Q_{\mathrm{BC}} & =(\Delta E)_{\mathrm{BC}}-W_{\mathrm{BC}}=\frac{3}{2} p_{\mathrm{B}}\left(V_{\mathrm{A}}-V_{\mathrm{B}}\right) .
\end{aligned}
$$

(c) Along CA we have

$$
\begin{aligned}
W_{\mathrm{BC}} & =0 \\
(\Delta E)_{\mathrm{BC}} & =\frac{5}{2}\left(p_{\mathrm{A}}-p_{\mathrm{B}}\right) V_{\mathrm{A}} \\
Q_{\mathrm{CA}} & =(\Delta E)_{\mathrm{CA}}-W_{\mathrm{CA}}=\frac{5}{2}\left(p_{\mathrm{A}}-p_{\mathrm{B}}\right) V_{\mathrm{A}} .
\end{aligned}
$$

(c) The work done per cycle is

$$
\begin{aligned}
W & =W_{\mathrm{AB}}+W_{\mathrm{BC}}+W_{\mathrm{CA}} \\
& =\frac{2}{3}\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right)\left(p_{\mathrm{A}}-p_{\mathrm{B}}\right) .
\end{aligned}
$$

(3) For each of the following differentials, determine whether it is exact or inexact. If it is exact, find the function whose differential it represents.
(a) $x y^{2} d x+x^{2} y d y$
(b) $z d x+x d y+y d z$
(c) $x^{-2} d x-2 x^{-3} d y$
(d) $e^{x} d x+\ln (y) d y$

Solution :
We will represent each differential as $đ A=\sum_{\mu} A_{\mu} d x^{\mu}$.
(a) $A_{x}=x y^{2}$ and $A_{y}=x^{2} y$, so $\frac{\partial A_{x}}{\partial y}=2 x y=\frac{\partial A_{y}}{\partial x}$. The differential is exact, and is $d A$, where $A(x, y)=\frac{1}{2} x^{2} y^{2}+C$, where C is a constant.
(b) With $A_{x}=z, A_{y}=x$, and $A_{z}=y$, we have $\frac{\partial A_{x}}{\partial y}=0=\frac{\partial A_{y}}{\partial x}$, but $\frac{\partial A_{x}}{\partial z}=1 \neq \frac{\partial A_{z}}{\partial x}=0$. So the differential is inexact.
(c) $A_{x}=x^{-2}$ and $A_{y}=-2 x^{-3}$, so $\frac{\partial A_{x}}{\partial y}=-2 x^{-3}$ and $\frac{\partial A_{y}}{\partial x}=0$, so the differential is inexact.
(d) $A_{x}=e^{x}$ and $A_{y}=\ln y$, so $\frac{\partial A_{x}}{\partial y}=0=\frac{\partial A_{y}}{\partial x}=0$. The differential is exact, with $A(x, y)=$ $e^{x}+y \ln y-y+C$.

