
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #5 SOLUTIONS

(1) Consider a system composed of N spin tetramers, each of which is described by a
Hamiltonian

Ĥ = −J(σ1σ2 +σ1σ3 +σ1σ4 +σ2σ3 +σ2σ4 +σ3σ4)−Kσ1σ2σ3σ4 −µ0H(σ1 +σ2 +σ3 +σ4) .

The individual tetramers are otherwise noninteracting.

(a) Find the single tetramer partition function ζ . Suggestion: construct a table of all the
possible tetramer states and their energies.

(b) Find the magnetization per tetramer m = µ0

〈

σ1 + σ2 + σ3 + σ4

〉

.

(c) Suppose the tetramer number density is nt. The magnetization density is M = ntm.
Find the zero field susceptibility χ(T ) = (∂M/∂H)H=0.

Solution :

(a) First, note that

−J(σ1σ2 + σ1σ3 + σ1σ4 + σ2σ3 + σ2σ4 + σ3σ4) = 2J − 1
2J(σ1 + σ2 + σ3 + σ4)

2 .

Next, construct a table, as in Tab. 1. We see that

ζ = 2 eβ(6J+K) cosh(4βµ0H) + 8 e−βK cosh(2βµ0H) + 6 e−β(2J−K) .

(b) We have

m =
1

β ζ
· ∂ζ

∂H
=

4µ0 eβ(6J+K) sinh(4βµ0H) + 8µ0 e−βK sinh(2βµ0H)

eβ(6J+K) cosh(4βµ0H) + 4 e−βK cosh(2βµ0H) + 3 e−β(2J−K)

(c) In the limit H → 0, we have

M(T,H) = nt m(T,H) =
16βµ2

0 eβ(6J+K) + 16βµ2
0 e−βK

eβ(6J+K) + 4 e−βK + 3 e−β(2J−K)
· nt ,

so

χ(T ) =
16ntµ

2
0

k
B
T

· e(6J+K)/k
B

T + e−K/k
B

T

e(6J+K)/k
B

T + 4 e−K/k
B

T + 3 e−(2J−K)/k
B

T
.

Note that this expression reduces to 4ntµ
2
0/kB

T when J = K = 0, which is the limit of
noninteracting spins.
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|Ψ 〉 E |Ψ 〉 E

| ↑↑↑↑ 〉 −6J − K − 4µ0H | ↑↑↑↓ 〉 K − 2µ0H

| ↓↓↓↓ 〉 −6J − K + 4µ0H | ↑↑↓↑ 〉 K − 2µ0H

| ↑↑↓↓ 〉 2J − K | ↑↓↑↑ 〉 K − 2µ0H

| ↑↓↑↓ 〉 2J − K | ↓↑↑↑ 〉 K − 2µ0H

| ↑↓↓↑ 〉 2J − K | ↓↑↑↑ 〉 K + 2µ0H

| ↓↑↑↓ 〉 2J − K | ↑↓↑↑ 〉 K + 2µ0H

| ↓↑↓↑ 〉 2J − K | ↑↑↓↑ 〉 K + 2µ0H

| ↓↓↑↑ 〉 2J − K | ↑↑↑↓ 〉 K + 2µ0H

Table 1: Energy table for problem 1.

(2) Look up the relevant parameters for the HCl molecule and find the corresponding
value of Θrot. Then compute the value of the rotational partition function ξrot(T ) at T =
300K, showing the contribution from each of the terms in eqn. 4.266 of the Lecture Notes.

Solution :

HCl is a diatomic molecule. Let the separation of the nuclei be d. From elementary me-
chanics, the moment of inertia about the CM is I = µd2, where µ = m

H
m

Cl
/(m

H
+ m

Cl
)

is the reduced mass. The molar mass of hydrogen is 1 g/mol, while that of chlorine is
35.5 g/mol. Thus, µ = 0.97 g/mol. I find d = 0.13 nm via web sources. Thus, the tempera-
ture associated with rotations is

Θ =
~

2

2µd2k
B

=
(1.055 × 10−27 g cm2/s)2

2 · (0.97 g/6.02 × 1023) · (1.3 × 10−8 cm)2 · 1.38 × 10−16 erg/K
= 15K .

The rotational partition function is

ξrot =

∞
∫

0

dL (2L + 1) e−L(L+1) Θ/T =
T

Θ
+

1

3
+

1

15

Θ

T
+

4

315

(

Θ

T

)2

+ . . . ,

where Θ = ~
2/2Ik

B
. At T = 300K, Θ/T = 0.05, and the above series yields

ξrot = 20 + 0.33333 + 0.0033333 + 0.0000317 + . . . = 20.336698 . . . .

(3) In a chemical reaction among σ species,

ζ1 A1 + ζ2 A2 + · · · + ζσ Aσ = 0 ,

where Aa is a chemical formula and ζa is a stoichiometric coefficient. When ζa > 0, the
corresponding Aa is a product; when ζa < 0, Aa is a reactant. (See §2.13.1 of the Lecture
Notes.) The condition for equilibrium is

σ
∑

a=1

ζa µa = 0 ,
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where µa is the chemical potential of the ath species. The equilibrium constant for the reac-
tion is defined as

κ(T, p) =

σ
∏

a=1

xζa
a ,

where xa = na

/
∑σ

b=1 nb is the fraction of species a.

(a) Working in the grand canonical ensemble, show that

κ(T, p) =
σ

∏

a=1

(

k
B
T ξa(T )

pλ3
a

)ζa

.

Note that the above expression does not involve any of the chemical potentials µa.

(b) Compute the equilibrium constant κ(T, p) for the dissociative reaction N2 ⇋ 2N
at T = 5000K, assuming the following: the characteristic temperature of rotation
and that of vibration of the N2 molecule are Θrot = 2.84K and Θvib = 3350K. The
dissociation energy, including zero point contributions, is ∆ = 169.3 kcal mol−1. The
electronic ground state of N2 has no degeneracy, but that of the N atom is 4 due to
electronic spin.

Solution :

(a) In the GCE, we have

Ω
(

T, V, {µa}
)

= −k
B
T V

σ
∑

a=1

λ−3
a eµa/k

B
T ξa ,

where λa = (2π~
2/makB

T )1/2 the thermal wavelength for species a and ξa(T ) is the inter-
nal coordinate partition function for species a. We then have

na = − 1

V

(

∂Ω

∂µa

)

T,V,µ
b6=a

= za λ−3
a ξa ,

where za = eµa/k
B

T . OK, so we now define

xa =
na

∑σ
b=1 nb

=
zaλ

−3
a ξa

p/k
B
T

=
k

B
T ξa za

p λ3
a

,

since
∑

b nb = −Ω/V k
B
T = p/k

B
T . (Remember Ω = −pV ). Therefore

κ(T, p) ≡
σ

∏

a=1

xζa
a

=

σ
∏

a=1

(

k
B
T ξa

pλ3
a

)ζa

·
σ

∏

a=1

zζa
a .
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However,
σ

∏

a=1

zζa

a =

σ
∏

a=1

eζaµa/k
B

T = exp

(

1

k
B
T

σ
∑

a=1

ζa µa

)

= 1 ,

since
∑σ

a=1 ζa µa = 0.

(b) The internal partition function for N is just ξN = (2S + 1)(2I + 1), where S = 3
2 is the

total electronic spin from Hund’s rules, and I = 1 is the nuclear spin. It turns out that we
will never need to know the value of I . For for N2 the internal partition function is

ξN
2

= (2I + 1)2 · T

2Θrot

· e∆/T

1 − e−Θ
vib

/T
.

This formula requires some explanation. We appeal to Eqs. 4.288 and 4.289 in the Lecture
Notes. Since T ≫ Θrot, we have

ζg ≈ ζu ≈ 1
2

∞
∫

0

du e−uΘ
rot

/T =
T

2Θrot

,

where the factor of 1
2 comes from summing only over half the allowed L values, i.e. either

all even or all odd, and where u = L(L + 1) so du = (2L + 1) dL. We then have ξrot =
(2I+1)2T/2Θrot because gg+gu = (2I+1)2. The vibrational partition function was derived

to be ξvib = 1
2 csch (Θvib/2T ), however since we are including the zero point vibrational

energy 1
2~ωvib = 1

2k
B
Θvib in the dissociation energy, we get the above expression for ξN

2

.

According to our result from part (a), we have

κ(T, p) = 32k
B
Θrot · e−∆/T ·

(

1 − e−Θ
vib

/T
)

·
λ3

N
2

pλ6
N

= 8
√

2 · k
B
Θrot

pλ3
N

· e−∆/T ·
(

1 − e−Θ
vib

/T
)

.

Now we need to evaluate some quantities. The gas constant is

R = N
A
k

B
= 8.314 J/mol · K = 1.986 × 10−3 kcal/mol · K ,

hence at T = 5000K, we have ∆/k
B
T = 17.0. Furthermore, Θvib/T = 0.670. The thermal

wavelength of N at this temperature is found to be

λN =

(

2π · (1.055 × 10−27 g cm2/s)2

(14 g/6.02 × 1023) · (1.38 × 10−16 erg/K) · 5000K

)1/2

= 6.60 Å .

We also have

k
B
Θrot

pλ3
N

=
p0

p
· (1.38 × 10−16 erg/K) · (2.84K)

(1.013 × 106 g/cm · s2)(6.60 × 10−8 cm)3
= 1.35 p0/p ,

where p0 = 1.013 × 105 Pa is atmospheric pressure. Putting it all together, we obtain

κ(T = 5000K, p) = 3.09 × 10−7 · p0

p
.
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