PHYSICS 140A : STATISTICAL PHYSICS
 HW ASSIGNMENT \#5 SOLUTIONS

(1) Consider a system composed of N spin tetramers, each of which is described by a Hamiltonian

$$
\hat{H}=-J\left(\sigma_{1} \sigma_{2}+\sigma_{1} \sigma_{3}+\sigma_{1} \sigma_{4}+\sigma_{2} \sigma_{3}+\sigma_{2} \sigma_{4}+\sigma_{3} \sigma_{4}\right)-K \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}-\mu_{0} H\left(\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right) .
$$

The individual tetramers are otherwise noninteracting.
(a) Find the single tetramer partition function ζ. Suggestion: construct a table of all the possible tetramer states and their energies.
(b) Find the magnetization per tetramer $m=\mu_{0}\left\langle\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right\rangle$.
(c) Suppose the tetramer number density is n_{t}. The magnetization density is $M=n_{\mathrm{t}} m$. Find the zero field susceptibility $\chi(T)=(\partial M / \partial H)_{H=0}$.

Solution :
(a) First, note that

$$
-J\left(\sigma_{1} \sigma_{2}+\sigma_{1} \sigma_{3}+\sigma_{1} \sigma_{4}+\sigma_{2} \sigma_{3}+\sigma_{2} \sigma_{4}+\sigma_{3} \sigma_{4}\right)=2 J-\frac{1}{2} J\left(\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right)^{2}
$$

Next, construct a table, as in Tab. 1. We see that

$$
\zeta=2 e^{\beta(6 J+K)} \cosh \left(4 \beta \mu_{0} H\right)+8 e^{-\beta K} \cosh \left(2 \beta \mu_{0} H\right)+6 e^{-\beta(2 J-K)}
$$

(b) We have

$$
m=\frac{1}{\beta \zeta} \cdot \frac{\partial \zeta}{\partial H}=\frac{4 \mu_{0} e^{\beta(6 J+K)} \sinh \left(4 \beta \mu_{0} H\right)+8 \mu_{0} e^{-\beta K} \sinh \left(2 \beta \mu_{0} H\right)}{e^{\beta(6 J+K)} \cosh \left(4 \beta \mu_{0} H\right)+4 e^{-\beta K} \cosh \left(2 \beta \mu_{0} H\right)+3 e^{-\beta(2 J-K)}}
$$

(c) In the limit $H \rightarrow 0$, we have

$$
M(T, H)=n_{\mathrm{t}} m(T, H)=\frac{16 \beta \mu_{0}^{2} e^{\beta(6 J+K)}+16 \beta \mu_{0}^{2} e^{-\beta K}}{e^{\beta(6 J+K)}+4 e^{-\beta K}+3 e^{-\beta(2 J-K)}} \cdot n_{\mathrm{t}}
$$

so

$$
\chi(T)=\frac{16 n_{\mathrm{t}} \mu_{0}^{2}}{k_{\mathrm{B}} T} \cdot \frac{e^{(6 J+K) / k_{\mathrm{B}} T}+e^{-K / k_{\mathrm{B}} T}}{e^{(6 J+K) / k_{\mathrm{B}} T}+4 e^{-K / k_{\mathrm{B}} T}+3 e^{-(2 J-K) / k_{\mathrm{B}} T}} .
$$

Note that this expression reduces to $4 n_{t} \mu_{0}^{2} / k_{\mathrm{B}} T$ when $J=K=0$, which is the limit of noninteracting spins.

$\|\Psi\rangle$	E	$\|\Psi\rangle$	E
$\|\uparrow \uparrow \uparrow \uparrow\rangle$	$-6 J-K-4 \mu_{0} H$	$\|\uparrow \uparrow \uparrow \downarrow\rangle$	$K-2 \mu_{0} H$
$\|\downarrow \downarrow \downarrow \downarrow\rangle$	$-6 J-K+4 \mu_{0} H$	$\|\uparrow \uparrow \downarrow \uparrow\rangle$	$K-2 \mu_{0} H$
$\|\uparrow \uparrow \downarrow \downarrow\rangle$	$2 J-K$	$\|\uparrow \downarrow \uparrow \uparrow\rangle$	$K-2 \mu_{0} H$
$\|\uparrow \downarrow \uparrow \downarrow\rangle$	$2 J-K$	$\|\downarrow \uparrow \uparrow \uparrow\rangle$	$K-2 \mu_{0} H$
$\|\uparrow \downarrow \downarrow \uparrow\rangle$	$2 J-K$	$\|\downarrow \uparrow \uparrow \uparrow\rangle$	$K+2 \mu_{0} H$
$\|\downarrow \uparrow \uparrow \downarrow\rangle$	$2 J-K$	$\|\uparrow \downarrow \uparrow \uparrow\rangle$	$K+2 \mu_{0} H$
$\|\downarrow \uparrow \downarrow \uparrow\rangle$	$2 J-K$	$\|\uparrow \uparrow \downarrow \uparrow\rangle$	$K+2 \mu_{0} H$
$\|\downarrow \downarrow \uparrow \uparrow\rangle$	$2 J-K$	$\|\uparrow \uparrow \uparrow \downarrow\rangle$	$K+2 \mu_{0} H$

Table 1: Energy table for problem 1.
(2) Look up the relevant parameters for the HCl molecule and find the corresponding value of $\Theta_{\text {rot }}$. Then compute the value of the rotational partition function $\xi_{\text {rot }}(T)$ at $T=$ 300 K , showing the contribution from each of the terms in eqn. 4.266 of the Lecture Notes.

Solution :

HCl is a diatomic molecule. Let the separation of the nuclei be d. From elementary mechanics, the moment of inertia about the CM is $I=\mu d^{2}$, where $\mu=m_{\mathrm{H}} m_{\mathrm{Cl}} /\left(m_{\mathrm{H}}+m_{\mathrm{Cl}}\right)$ is the reduced mass. The molar mass of hydrogen is $1 \mathrm{~g} / \mathrm{mol}$, while that of chlorine is $35.5 \mathrm{~g} / \mathrm{mol}$. Thus, $\mu=0.97 \mathrm{~g} / \mathrm{mol}$. I find $d=0.13 \mathrm{~nm}$ via web sources. Thus, the temperature associated with rotations is

$$
\Theta=\frac{\hbar^{2}}{2 \mu d^{2} k_{\mathrm{B}}}=\frac{\left(1.055 \times 10^{-27} \mathrm{~g} \mathrm{~cm}^{2} / \mathrm{s}\right)^{2}}{2 \cdot\left(0.97 \mathrm{~g} / 6.02 \times 10^{23}\right) \cdot\left(1.3 \times 10^{-8} \mathrm{~cm}\right)^{2} \cdot 1.38 \times 10^{-16} \mathrm{erg} / \mathrm{K}}=15 \mathrm{~K} .
$$

The rotational partition function is

$$
\xi_{\text {rot }}=\int_{0}^{\infty} d L(2 L+1) e^{-L(L+1) \Theta / T}=\frac{T}{\Theta}+\frac{1}{3}+\frac{1}{15} \frac{\Theta}{T}+\frac{4}{315}\left(\frac{\Theta}{T}\right)^{2}+\ldots
$$

where $\Theta=\hbar^{2} / 2 I k_{\mathrm{B}}$. At $T=300 \mathrm{~K}, \Theta / T=0.05$, and the above series yields

$$
\xi_{\text {rot }}=20+0.33333+0.0033333+0.0000317+\ldots=20.336698 \ldots
$$

(3) In a chemical reaction among σ species,

$$
\zeta_{1} \mathrm{~A}_{1}+\zeta_{2} \mathrm{~A}_{2}+\cdots+\zeta_{\sigma} \mathrm{A}_{\sigma}=0
$$

where A_{a} is a chemical formula and ζ_{a} is a stoichiometric coefficient. When $\zeta_{a}>0$, the corresponding A_{a} is a product; when $\zeta_{a}<0, \mathrm{~A}_{a}$ is a reactant. (See $\S 2.13 .1$ of the Lecture Notes.) The condition for equilibrium is

$$
\sum_{a=1}^{\sigma} \zeta_{a} \mu_{a}=0
$$

where μ_{a} is the chemical potential of the $a^{\text {th }}$ species. The equilibrium constant for the reaction is defined as

$$
\kappa(T, p)=\prod_{a=1}^{\sigma} x_{a}^{\zeta_{a}},
$$

where $x_{a}=n_{a} / \sum_{b=1}^{\sigma} n_{b}$ is the fraction of species a.
(a) Working in the grand canonical ensemble, show that

$$
\kappa(T, p)=\prod_{a=1}^{\sigma}\left(\frac{k_{\mathrm{B}} T \xi_{a}(T)}{p \lambda_{a}^{3}}\right)^{\zeta_{a}} .
$$

Note that the above expression does not involve any of the chemical potentials μ_{a}.
(b) Compute the equilibrium constant $\kappa(T, p)$ for the dissociative reaction $\mathrm{N}_{2} \rightleftharpoons 2 \mathrm{~N}$ at $T=5000 \mathrm{~K}$, assuming the following: the characteristic temperature of rotation and that of vibration of the N_{2} molecule are $\Theta_{\mathrm{rot}}=2.84 \mathrm{~K}$ and $\Theta_{\mathrm{vib}}=3350 \mathrm{~K}$. The dissociation energy, including zero point contributions, is $\Delta=169.3 \mathrm{kcal} \mathrm{mol}^{-1}$. The electronic ground state of N_{2} has no degeneracy, but that of the N atom is 4 due to electronic spin.

Solution :
(a) In the GCE, we have

$$
\Omega\left(T, V,\left\{\mu_{a}\right\}\right)=-k_{\mathrm{B}} T V \sum_{a=1}^{\sigma} \lambda_{a}^{-3} e^{\mu_{a} / k_{\mathrm{B}} T} \xi_{a},
$$

where $\lambda_{a}=\left(2 \pi \hbar^{2} / m_{a} k_{\mathrm{B}} T\right)^{1 / 2}$ the thermal wavelength for species a and $\xi_{a}(T)$ is the internal coordinate partition function for species a. We then have

$$
n_{a}=-\frac{1}{V}\left(\frac{\partial \Omega}{\partial \mu_{a}}\right)_{T, V, \mu_{b \neq a}}=z_{a} \lambda_{a}^{-3} \xi_{a}
$$

where $z_{a}=e^{\mu_{a} / k_{\mathrm{B}} T}$. OK, so we now define

$$
x_{a}=\frac{n_{a}}{\sum_{b=1}^{\sigma} n_{b}}=\frac{z_{a} \lambda_{a}^{-3} \xi_{a}}{p / k_{\mathrm{B}} T}=\frac{k_{\mathrm{B}} T \xi_{a} z_{a}}{p \lambda_{a}^{3}},
$$

since $\sum_{b} n_{b}=-\Omega / V k_{\mathrm{B}} T=p / k_{\mathrm{B}} T$. (Remember $\Omega=-p V$). Therefore

$$
\begin{aligned}
\kappa(T, p) & \equiv \prod_{a=1}^{\sigma} x_{a}^{\zeta_{a}} \\
& =\prod_{a=1}^{\sigma}\left(\frac{k_{\mathrm{B}} T \xi_{a}}{p \lambda_{a}^{3}}\right)^{\zeta_{a}} \cdot \prod_{a=1}^{\sigma} z_{a}^{\zeta_{a}}
\end{aligned}
$$

However,

$$
\prod_{a=1}^{\sigma} z_{a}^{\zeta_{a}}=\prod_{a=1}^{\sigma} e^{\zeta_{a} \mu_{a} / k_{\mathrm{B}} T}=\exp \left(\frac{1}{k_{\mathrm{B}} T} \sum_{a=1}^{\sigma} \zeta_{a} \mu_{a}\right)=1
$$

since $\sum_{a=1}^{\sigma} \zeta_{a} \mu_{a}=0$.
(b) The internal partition function for N is just $\xi_{\mathrm{N}}=(2 S+1)(2 I+1)$, where $S=\frac{3}{2}$ is the total electronic spin from Hund's rules, and $I=1$ is the nuclear spin. It turns out that we will never need to know the value of I. For for N_{2} the internal partition function is

$$
\xi_{\mathrm{N}_{2}}=(2 I+1)^{2} \cdot \frac{T}{2 \Theta_{\mathrm{rot}}} \cdot \frac{e^{\Delta / T}}{1-e^{-\Theta_{\mathrm{vib}} / T}} .
$$

This formula requires some explanation. We appeal to Eqs. 4.288 and 4.289 in the Lecture Notes. Since $T \gg \Theta_{\text {rot }}$, we have

$$
\zeta_{g} \approx \zeta_{u} \approx \frac{1}{2} \int_{0}^{\infty} d u e^{-u \Theta_{\mathrm{rot}} / T}=\frac{T}{2 \Theta_{\mathrm{rot}}}
$$

where the factor of $\frac{1}{2}$ comes from summing only over half the allowed L values, i.e. either all even or all odd, and where $u=L(L+1)$ so $d u=(2 L+1) d L$. We then have $\xi_{\text {rot }}=$ $(2 I+1)^{2} T / 2 \Theta_{\text {rot }}$ because $g_{g}+g_{u}=(2 I+1)^{2}$. The vibrational partition function was derived to be $\xi_{\mathrm{vib}}=\frac{1}{2} \operatorname{csch}\left(\Theta_{\mathrm{vib}} / 2 T\right)$, however since we are including the zero point vibrational energy $\frac{1}{2} \hbar \omega_{\text {vib }}=\frac{1}{2} k_{\mathrm{B}} \Theta_{\text {vib }}$ in the dissociation energy, we get the above expression for $\xi_{\mathrm{N}_{2}}$. According to our result from part (a), we have

$$
\begin{aligned}
\kappa(T, p) & =32 k_{\mathrm{B}} \Theta_{\mathrm{rot}} \cdot e^{-\Delta / T} \cdot\left(1-e^{-\Theta_{\mathrm{vib}} / T}\right) \cdot \frac{\lambda_{\mathrm{N}_{2}}^{3}}{p \lambda_{\mathrm{N}}^{6}} \\
& =8 \sqrt{2} \cdot \frac{k_{\mathrm{B}} \Theta_{\mathrm{rot}}}{p \lambda_{\mathrm{N}}^{3}} \cdot e^{-\Delta / T} \cdot\left(1-e^{-\Theta_{\mathrm{vib}} / T}\right)
\end{aligned}
$$

Now we need to evaluate some quantities. The gas constant is

$$
R=N_{\mathrm{A}} k_{\mathrm{B}}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}=1.986 \times 10^{-3} \mathrm{kcal} / \mathrm{mol} \cdot \mathrm{~K},
$$

hence at $T=5000 \mathrm{~K}$, we have $\Delta / k_{\mathrm{B}} T=17.0$. Furthermore, $\Theta_{\mathrm{vib}} / T=0.670$. The thermal wavelength of N at this temperature is found to be

$$
\lambda_{\mathrm{N}}=\left(\frac{2 \pi \cdot\left(1.055 \times 10^{-27} \mathrm{~g} \mathrm{~cm}^{2} / \mathrm{s}\right)^{2}}{\left(14 \mathrm{~g} / 6.02 \times 10^{23}\right) \cdot\left(1.38 \times 10^{-16} \mathrm{erg} / \mathrm{K}\right) \cdot 5000 \mathrm{~K}}\right)^{1 / 2}=6.60 \AA
$$

We also have

$$
\frac{k_{\mathrm{B}} \Theta_{\mathrm{rot}}}{p \lambda_{\mathrm{N}}^{3}}=\frac{p_{0}}{p} \cdot \frac{\left(1.38 \times 10^{-16} \mathrm{erg} / \mathrm{K}\right) \cdot(2.84 \mathrm{~K})}{\left(1.013 \times 10^{6} \mathrm{~g} / \mathrm{cm} \cdot \mathrm{~s}^{2}\right)\left(6.60 \times 10^{-8} \mathrm{~cm}\right)^{3}}=1.35 p_{0} / p,
$$

where $p_{0}=1.013 \times 10^{5} \mathrm{~Pa}$ is atmospheric pressure. Putting it all together, we obtain

$$
\kappa(T=5000 \mathrm{~K}, p)=3.09 \times 10^{-7} \cdot \frac{p_{0}}{p} .
$$

