PHYSICS 140A : STATISTICAL PHYSICS
 HW ASSIGNMENT \#4 SOLUTIONS

(1) Consider a d-dimensional ultrarelativistic gas of classical indistinguishable particles with a dispersion $\varepsilon(\boldsymbol{p})=c|\boldsymbol{p}|$.
(a) Find an expression for the grand potential $\Omega(T, V, \mu)$.
(b) Find the average number of particles $N(T, V, \mu)$.
(c) Find the entropy $S(T, V, \mu)$.
(d) Express the RMS fluctuations in the number of particle number, $(\Delta N)_{\mathrm{RMS}}$, in terms of the volume V, temperature T, and the pressure p.

Solution:
(a) The OCE partition function $Z(T, V, N)$ is computed in $\S 4.2 .4$ of the Lecture Notes. One finds

$$
Z(T, V, N)=\frac{V^{N}}{N!}\left(\frac{\Gamma(d) \Omega_{d}}{(\beta h c)^{d}}\right)^{N}
$$

From $\Xi=e^{-\beta \Omega}=\sum_{N=0}^{\infty} e^{\beta \mu N} Z(T, V, N)$, we obtain

$$
\Omega(T, V, \mu)=-\frac{\Gamma(d) \Omega_{d}}{(h c)^{d}} V\left(k_{\mathrm{B}} T\right)^{d+1} e^{\mu / k_{\mathrm{B}} T}
$$

(b) The particle number is

$$
N(T, V, \mu)=-\left(\frac{\partial \Omega}{\partial \mu}\right)_{T, V}=-(d+1) \frac{\Gamma(d) \Omega_{d}}{(h c)^{d}} V\left(k_{\mathrm{B}} T\right)^{d} e^{\mu / k_{\mathrm{B}} T}
$$

(c) The entropy is

$$
S(T, V, \mu)=-\left(\frac{\partial \Omega}{\partial T}\right)_{V, \mu}=\left((d+1) k_{\mathrm{B}}-\frac{\mu}{T}\right) \frac{\Gamma(d) \Omega_{d}}{(h c)^{d}} V\left(k_{\mathrm{B}} T\right)^{d} e^{\mu / k_{\mathrm{B}} T} .
$$

(d) The variance of the number \hat{N} is (see eqn. 4.138 of the Lecture Notes)

$$
\operatorname{var}(\hat{N})=k_{\mathrm{B}} T\left(\frac{\partial N}{\partial \mu}\right)_{T, V}=N=\frac{p V}{k_{\mathrm{B}} T} .
$$

Thus,

$$
(\Delta N)_{\mathrm{RMS}}=\sqrt{\operatorname{var}(\hat{N})}=\left(\frac{p V}{k_{\mathrm{B}} T}\right)^{1 / 2}
$$

(2) Consider again the d-dimensional classical ultrarelativistic gas with $\varepsilon(\boldsymbol{p})=c p$.
(a) If $d=3$, find the momentum distribution function $g(\boldsymbol{p})$.
(b) Again for $d=3$, find a general formula for the moments $\left.\left.\langle | \boldsymbol{p}\right|^{k}\right\rangle$.
(c) Repeat parts (a) and (b) for the case $d=2$.
(d) In $d=3$, what is the distribution function $f(\boldsymbol{v})$ for velocities?

Solution :
(a) We have

$$
g(\boldsymbol{p})=\left\langle\delta\left(\boldsymbol{p}-\boldsymbol{p}_{1}\right)\right\rangle=\frac{e^{-\beta c p}}{\int d^{3} p e^{-\beta c p}}=\frac{c^{3}}{8 \pi\left(k_{\mathrm{B}} T\right)^{3}} e^{-\beta c p} .
$$

(b) The moments are

$$
\left.\left.\langle | \boldsymbol{p}\right|^{k}\right\rangle=\frac{1}{2}(\beta c)^{3} \int_{0}^{\infty} d p p^{2+k} e^{-\beta c p}=\frac{1}{2}(k+2)!(\beta c)^{-k}
$$

(c) $\operatorname{In} d=2$,

$$
g(\boldsymbol{p})=\left\langle\delta\left(\boldsymbol{p}-\boldsymbol{p}_{1}\right)\right\rangle=\frac{e^{-\beta c p}}{\int d^{2} p e^{-\beta c p}}=\frac{c^{2}}{2 \pi\left(k_{\mathrm{B}} T\right)^{2}} e^{-\beta c p}
$$

and

$$
\left.\left.\langle | \boldsymbol{p}\right|^{k}\right\rangle=(\beta c)^{2} \int_{0}^{\infty} d p p^{1+k} e^{-\beta c p}=(k+1)!(\beta c)^{-k}
$$

(d) The velocity is $\boldsymbol{v}=\frac{\partial \varepsilon}{\partial p}=c \hat{\boldsymbol{p}}$. Thus, the magnitude is fixed at $|\boldsymbol{v}|=c$ and the direction is distributed isotropically, i.e.

$$
f(\boldsymbol{v})=\frac{\delta(v-c)}{4 \pi c^{2}} .
$$

(3) A classical gas of indistinguishable particles in three dimensions is described by the Hamiltonian

$$
\hat{H}=\sum_{i=1}^{N}\left\{A\left|\boldsymbol{p}_{i}\right|^{3}-\mu_{0} H S_{i}\right\},
$$

where A is a constant, and where $S_{i} \in\{-1,0,+1\}$ (i.e. there are three possible spin polarization states).
(a) Compute the free energy $F_{\text {gas }}(T, H, V, N)$.
(b) Compute the magnetization density $m_{\text {gas }}=M_{\text {gas }} / V$ as a function of temperature, pressure, and magnetic field.

The gas is placed in thermal contact with a surface containing N_{s} adsorption sites, each with adsorption energy $-\Delta$. The surface is metallic and shields the adsorbed particles from the magnetic field, so the field at the surface may be approximated by $H=0$.
(c) Find the Landau free energy for the surface, $\Omega_{\text {surf }}\left(T, N_{\mathrm{S}}, \mu\right)$.
(d) Find the fraction $f_{0}(T, \mu)$ of empty adsorption sites.
(e) Find the gas pressure $p^{*}(T, H)$ at which $f_{0}=\frac{1}{2}$.

Solution :

(a) The single particle partition function is

$$
\zeta(T, V, H)=V \int \frac{d^{3} p}{h^{3}} e^{-A p^{3} / k_{\mathrm{B}} T} \sum_{S=-1}^{1} e^{\mu_{0} H S / k_{\mathrm{B}} T}=\frac{4 \pi V k_{\mathrm{B}} T}{3 A h^{3}} \cdot\left(1+2 \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)\right) .
$$

The N-particle partition function is $Z_{\mathrm{gas}}(T, H, V, N)=\zeta^{N} / N$!, hence

$$
F_{\text {gas }}=-N k_{\mathrm{B}} T\left[\ln \left(\frac{4 \pi V k_{\mathrm{B}} T}{3 N A h^{3}}\right)+1\right]-N k_{\mathrm{B}} T \ln \left(1+2 \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)\right)
$$

(b) The magnetization density is

$$
m_{\text {gas }}(T, p, H)=-\frac{1}{V} \frac{\partial F}{\partial H}=\frac{p \mu_{0}}{k_{\mathrm{B}} T} \cdot \frac{2 \sinh \left(\mu_{0} H / k_{\mathrm{B}} T\right)}{1+2 \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)}
$$

We have used the ideal gas law, $p V=N k_{\mathrm{B}} T$ here.
(c) There are four possible states for an adsorption site: empty, or occupied by a particle with one of three possible spin polarizations. Thus, $\Xi_{\text {surf }}\left(T, N_{\mathrm{s}}, \mu\right)=\xi^{N_{\mathrm{s}}}$, with

$$
\xi(T, \mu)=1+3 e^{(\mu+\Delta) / k_{\mathrm{B}} T} .
$$

Thus,

$$
\Omega_{\text {surf }}\left(T, N_{\mathrm{s}}, \mu\right)=-N_{\mathrm{s}} k_{\mathrm{B}} T \ln \left(1+3 e^{(\mu+\Delta) / k_{\mathrm{B}} T}\right)
$$

(d) The fraction of empty adsorption sites is $1 / \xi$, i.e.

$$
f_{0}(T, \mu)=\frac{1}{1+3 e^{(\mu+\Delta) / k_{\mathrm{B}} T}}
$$

(e) Setting $f_{0}=\frac{1}{2}$, we obtain the equation $3 e^{(\mu+\Delta) / k_{\mathrm{B}} T}=1$, or

$$
e^{\mu / k_{\mathrm{B}} T}=\frac{1}{3} e^{-\Delta / k_{\mathrm{B}} T}
$$

We now need the fugacity $z=e^{\mu / k_{\mathrm{B}} T}$ in terms of p, T, and H. To this end, we compute the Landau free energy of the gas,

$$
\Omega_{\text {gas }}=-p V=-k_{\mathrm{B}} T \zeta e^{\mu / k_{\mathrm{B}} T}
$$

Thus,

$$
p^{*}(T, H)=\frac{k_{\mathrm{B}} T \zeta}{V} e^{\mu / k_{\mathrm{B}} T}=\frac{4 \pi\left(k_{\mathrm{B}} T\right)^{2}}{9 A h^{3}} \cdot\left(1+2 \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)\right) e^{-\Delta / k_{\mathrm{B}} T}
$$

