
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #4 SOLUTIONS

(1) Consider a d-dimensional ultrarelativistic gas of classical indistinguishable particles
with a dispersion ε(p) = c |p|.

(a) Find an expression for the grand potential Ω(T, V, µ).

(b) Find the average number of particles N(T, V, µ).

(c) Find the entropy S(T, V, µ).

(d) Express the RMS fluctuations in the number of particle number, (∆N)
RMS

, in terms
of the volume V , temperature T , and the pressure p.

Solution :

(a) The OCE partition function Z(T, V,N) is computed in §4.2.4 of the Lecture Notes. One
finds

Z(T, V,N) =
V N

N !

(

Γ(d)Ωd

(βhc)d

)N

.

From Ξ = e−βΩ =
∑

∞

N=0 eβµN Z(T, V,N), we obtain

Ω(T, V, µ) = −
Γ(d)Ωd

(hc)d
V (k

B
T )d+1 eµ/k

B
T .

(b) The particle number is

N(T, V, µ) = −

(

∂Ω

∂µ

)

T,V

= −(d + 1)
Γ(d)Ωd

(hc)d
V (k

B
T )d eµ/k

B
T

(c) The entropy is

S(T, V, µ) = −

(

∂Ω

∂T

)

V,µ

=

(

(d + 1)k
B
−

µ

T

)

Γ(d)Ωd

(hc)d
V (k

B
T )d eµ/k

B
T .

(d) The variance of the number N̂ is (see eqn. 4.138 of the Lecture Notes)

var(N̂ ) = k
B
T

(

∂N

∂µ

)

T,V

= N =
pV

k
B
T

.

Thus,

(∆N)
RMS

=

√

var(N̂) =

(

pV

k
B
T

)1/2

.
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(2) Consider again the d-dimensional classical ultrarelativistic gas with ε(p) = cp.

(a) If d = 3, find the momentum distribution function g(p).

(b) Again for d = 3, find a general formula for the moments 〈 |p|k 〉.

(c) Repeat parts (a) and (b) for the case d = 2.

(d) In d = 3, what is the distribution function f(v) for velocities?

Solution :

(a) We have

g(p) =
〈

δ(p − p1)
〉

=
e−βcp

∫

d3p e−βcp
=

c3

8π(k
B
T )3

e−βcp .

(b) The moments are

〈

|p|k
〉

= 1
2(βc)3

∞
∫

0

dp p2+k e−βcp = 1
2(k + 2)! (βc)−k

(c) In d = 2,

g(p) =
〈

δ(p − p1)
〉

=
e−βcp

∫

d2p e−βcp
=

c2

2π(k
B
T )2

e−βcp

and

〈

|p|k
〉

= (βc)2
∞
∫

0

dp p1+k e−βcp = (k + 1)! (βc)−k

(d) The velocity is v = ∂ε
∂p

= c p̂. Thus, the magnitude is fixed at |v| = c and the direction
is distributed isotropically, i.e.

f(v) =
δ(v − c)

4πc2
.

(3) A classical gas of indistinguishable particles in three dimensions is described by the
Hamiltonian

Ĥ =

N
∑

i=1

{

A |pi|
3 − µ0HSi

}

,

where A is a constant, and where Si ∈ {−1 , 0 , +1} (i.e. there are three possible spin po-
larization states).
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(a) Compute the free energy Fgas(T,H, V,N).

(b) Compute the magnetization density mgas = Mgas/V as a function of temperature,
pressure, and magnetic field.

The gas is placed in thermal contact with a surface containing NS adsorption sites, each
with adsorption energy −∆. The surface is metallic and shields the adsorbed particles
from the magnetic field, so the field at the surface may be approximated by H = 0.

(c) Find the Landau free energy for the surface, Ωsurf(T,N
S
, µ).

(d) Find the fraction f0(T, µ) of empty adsorption sites.

(e) Find the gas pressure p∗(T,H) at which f0 = 1
2 .

Solution :

(a) The single particle partition function is

ζ(T, V,H) = V

∫

d3p

h3
e−Ap3/k

B
T

1
∑

S=−1

eµ
0
HS/k

B
T =

4πV k
B
T

3Ah3
·
(

1 + 2 cosh(µ0H/k
B
T )

)

.

The N -particle partition function is Zgas(T,H, V,N) = ζN/N ! , hence

Fgas = −Nk
B
T

[

ln

(

4πV k
B
T

3NAh3

)

+ 1

]

− Nk
B
T ln

(

1 + 2 cosh(µ0H/k
B
T )

)

(b) The magnetization density is

mgas(T, p,H) = −
1

V

∂F

∂H
=

pµ0

k
B
T

·
2 sinh(µ0H/k

B
T )

1 + 2 cosh(µ0H/k
B
T )

We have used the ideal gas law, pV = Nk
B
T here.

(c) There are four possible states for an adsorption site: empty, or occupied by a particle
with one of three possible spin polarizations. Thus, Ξsurf(T,Ns, µ) = ξNs , with

ξ(T, µ) = 1 + 3 e(µ+∆)/k
B

T .

Thus,

Ωsurf(T,Ns, µ) = −NskB
T ln

(

1 + 3 e(µ+∆)/k
B

T
)

(d) The fraction of empty adsorption sites is 1/ξ, i.e.

f0(T, µ) =
1

1 + 3 e(µ+∆)/k
B

T

3



(e) Setting f0 = 1
2 , we obtain the equation 3 e(µ+∆)/k

B
T = 1, or

eµ/k
B

T = 1
3 e−∆/k

B
T .

We now need the fugacity z = eµ/k
B

T in terms of p, T , and H . To this end, we compute the
Landau free energy of the gas,

Ωgas = −pV = −k
B
T ζ eµ/k

B
T .

Thus,

p∗(T,H) =
k

B
T ζ

V
eµ/k

B
T =

4π(k
B
T )2

9Ah3
·
(

1 + 2 cosh(µ0H/k
B
T )

)

e−∆/k
B

T
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