PHYSICS 140A : STATISTICAL PHYSICS
 HW ASSIGNMENT \#3 SOLUTIONS

(1) Consider a system described by the Hamiltonian

$$
\hat{H}=-H \sum_{i=1}^{N} \sigma_{i}+\Delta \sum_{i=1}^{N}\left(1-\sigma_{i}^{2}\right)
$$

where each $\sigma_{i} \in\{-1,0,+1\}$.
(a) Compute the ordinary canonical partition function $Z(T, N, H, \Delta)$ and the free energy $F(T, N, H, \Delta)$.
(b) Find the magnetization $M(T, N, H, \Delta)$.
(c) Show that $\frac{\partial M}{\partial \Delta}=-\frac{\partial N_{0}}{\partial H}$, where $N_{0}=\sum_{i=1}^{N} \delta_{\sigma_{i}, 0}$.

Solution :
(a) We have

$$
\begin{aligned}
& Z(T, V, N, \Delta)=\left(e^{\beta H}+e^{-\beta \Delta}+e^{-\beta H}\right)^{N} \\
& F(T, V, N, \Delta)=-N k_{\mathrm{B}} T \ln \left(2 \cosh (\beta H)+e^{-\beta \Delta}\right)
\end{aligned}
$$

(b) The thermodynamic magnetization is given by

$$
M=-\left(\frac{\partial F}{\partial H}\right)_{N, \Delta}=\frac{N \sinh (\beta H)}{\cosh (\beta H)+\frac{1}{2} e^{-\beta \Delta}} .
$$

(c) The Hamiltonian can be written $\hat{H}=-H M+\Delta N_{0}$, since $\delta_{\sigma, 0}=1-\sigma^{2}$ when $\sigma \in$ $\{-1,0,+1\}$. Thus,

$$
N_{0}=+\left(\frac{\partial F}{\partial \Delta}\right)_{H, N} \quad \Rightarrow \quad-\frac{\partial^{2} F}{\partial H \partial \Delta}=\frac{\partial M}{\partial \Delta}=-\frac{\partial N_{0}}{\partial H} .
$$

(2) Consider a three-dimensional gas of N identical particles of mass m, each of which has a magnetic dipole moment $\boldsymbol{m}=\mu_{0} \hat{\boldsymbol{n}}$, where $\hat{\boldsymbol{n}}$ is a three-dimensional unit vector. The Hamiltonian is

$$
\hat{H}=\sum_{i=1}^{N}\left[\frac{\boldsymbol{p}_{i}^{2}}{2 m}-\mu_{0} \boldsymbol{H} \cdot \hat{\boldsymbol{n}}_{i}\right] .
$$

(a) What is the grand potential $\Omega(T, V, \mu, \boldsymbol{H})$?
(b) Express \boldsymbol{M} in terms of T, V, N, and \boldsymbol{H}, where N is the average number of particles.
(c) Find $M(T, V, N, \boldsymbol{H})$ to lowest order in the external field.

Solution :
(a) The contribution from the orientational ($\hat{\boldsymbol{n}})$ degrees of freedom to the single particle partition function is

$$
\xi_{\hat{\boldsymbol{n}}}=\int \frac{d \hat{\boldsymbol{n}}}{4 \pi} e^{\beta \mu_{0} \boldsymbol{H} \cdot \hat{\boldsymbol{n}}}=\frac{1}{2} \int_{-1}^{1} d x e^{\beta \mu_{0} H x}=\frac{\sinh \left(\beta \mu_{0} H\right)}{\beta \mu_{0} H},
$$

where the integral is done by choosing the $\hat{\boldsymbol{z}}$-axis to lie along \boldsymbol{H}, then integrating out over the azimuthal angle ϕ (yielding 2π), and finally over $x=\hat{\hat{H}} \cdot \hat{\boldsymbol{n}}=\cos \theta$. Then

$$
\xi(T, H)=V \lambda_{T}^{-d} \xi_{\hat{n}}(T, H)
$$

and so $Z(T, V, \mu, \boldsymbol{H})=\xi^{N} / N!$ is the canonical partition function. The grand potential, following the discussion in the Lecture Notes, is then

$$
\Omega(T, V, \mu, \boldsymbol{H})=-V k_{\mathrm{B}} T \lambda_{T}^{-d} e^{\mu / k_{\mathrm{B}} T} \cdot \frac{\sinh \left(\mu_{0} H / k_{\mathrm{B}} T\right)}{\mu_{0} H / k_{\mathrm{B}} T} .
$$

(b) Let $\alpha \equiv \mu_{0} H / k_{\mathrm{B}} T$, and define $\xi(\alpha)=\alpha^{-1} \sinh \alpha$. We have

$$
\boldsymbol{M}=-\frac{\partial \Omega}{\partial \boldsymbol{H}}=\left.V \lambda_{T}^{-d} e^{\mu / k_{\mathrm{B}} T} \cdot \mu_{0} \hat{\boldsymbol{H}} \xi^{\prime}(\alpha)\right|_{\alpha=\mu_{0} H / k_{\mathrm{B}} T} .
$$

The particle number is

$$
N=-\frac{\partial \Omega}{\partial \mu}=V \lambda_{T}^{-d} e^{\mu / k_{\mathrm{B}} T} \xi(\alpha),
$$

hence

$$
\boldsymbol{M}=N \mu_{0} \hat{\boldsymbol{H}} \cdot \frac{\xi^{\prime}(\alpha)}{\xi(\alpha)}=N \mu_{0} \hat{\boldsymbol{H}} \cdot\left(\operatorname{ctnh} \alpha-\alpha^{-1}\right) .
$$

Note that we have here used

$$
\frac{\partial H}{\partial \boldsymbol{H}}=\hat{\boldsymbol{H}}=\frac{\boldsymbol{H}}{H}
$$

where $H=|\boldsymbol{H}|$.
(c) We expand $\operatorname{ctnh} \alpha=\frac{1}{\alpha}+\frac{\alpha}{3}+\mathcal{O}\left(\alpha^{3}\right)$ in a Laurent series. To lowest order in \boldsymbol{H}, then,

$$
\boldsymbol{M}=\frac{N \mu_{0}^{2} \boldsymbol{H}}{3 k_{\mathrm{B}} T} .
$$

