PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT \#2 SOLUTIONS

(1) A box of volume V contains N_{1} identical atoms of mass m_{1} and N_{2} identical atoms of mass m_{2}.
(a) Compute the density of states $D\left(E, V, N_{1}, N_{2}\right)$.
(b) Let $x_{1} \equiv N_{1} / N$ be the fraction of particles of species \#1. Compute the statistical entropy $S\left(E, V, N, x_{1}\right)$.
(c) Under what conditions does increasing the fraction x_{1} result in an increase in statistical entropy of the system? Why?

Solution :
(a) Following the method outlined in $\S 4.2 .2$ of the Lecture Notes, we rescale all the momenta \boldsymbol{p}_{i} with $i \in\left\{1, \ldots, N_{1}\right\}$ as $p_{i}^{\alpha}=\sqrt{2 m_{1} E} u_{i}^{\alpha}$, and all the momenta p_{j} with $j \in$ $\left\{N_{1}+1, \ldots, N_{1}+N_{2}\right\}$ as $p_{j}^{\alpha}=\sqrt{2 m_{2} E} u_{j}^{\alpha}$. We then have

$$
D\left(E, V, N_{1}, N_{2}\right)=\frac{V^{N_{1}+N_{2}}}{N_{1}!N_{2}!}\left(\frac{\sqrt{2 m_{1} E}}{h}\right)^{N_{1} d}\left(\frac{\sqrt{2 m_{2} E}}{h}\right)^{N_{2} d} E^{-1} \cdot \frac{1}{2} \Omega_{\left(N_{1}+N_{2}\right) d} .
$$

Thus,

$$
D\left(E, V, N_{1}, N_{2}\right)=\frac{V^{N}}{N_{1}!N_{2}!}\left(\frac{m}{2 \pi \hbar^{2}}\right)^{\frac{1}{2} N d} \frac{E^{\frac{1}{2} N d-1}}{\Gamma(N d / 2)},
$$

where $N=N_{1}+N_{2}$ and $m \equiv m_{1}^{N_{1} / N} m_{2}^{N_{2} / N}$ has dimensions of mass. Note that the $N_{1}!N_{2}$! term in the denominator, in contrast to $N!$, appears because only particles of the same species are identical.
(b) Using Stirling's approximation $\ln K!\simeq K \ln K-K+\mathcal{O}(\ln K)$, we find
$\frac{S}{k_{\mathrm{B}}}=\ln D=N \ln \left(\frac{V}{N}\right)+\frac{1}{2} N d \ln \left(\frac{2 E}{N d}\right)-N\left(x_{1} \ln x_{1}+x_{2} \ln x_{2}\right)+\frac{1}{2} N d \ln \left(\frac{m_{1}^{x_{1}} m_{2}^{x_{2}}}{2 \pi \hbar^{2}}\right)+N\left(1+\frac{1}{2} d\right)$,
where $x_{2}=1-x_{1}$.
(c) Using $x_{2}=1-x_{1}$, we have

$$
\frac{\partial S}{\partial x_{1}}=N \ln \left(\frac{1-x_{1}}{x_{1}}\right)+\frac{1}{2} N d \ln \left(\frac{m_{1}}{m_{2}}\right) .
$$

Setting $\partial S / \partial x_{1}$ to zero at the solution $x=x_{1}^{*}$, we obtain

$$
x_{1}^{*}=\frac{m_{1}^{d / 2}}{m_{1}^{d / 2}+m_{2}^{d / 2}} \quad, \quad x_{2}^{*}=\frac{m_{2}^{d / 2}}{m_{1}^{d / 2}+m_{2}^{d / 2}} .
$$

Thus, an increase of x_{1} will result in an increase in statistical entropy if $x_{1}<x_{1}^{*}$. The reason is that $x_{1}=x_{1}^{*}$ is optimal in terms of maximizing S.
(2) Two chambers containing Argon gas at $p=1.0 \mathrm{~atm}$ and $T=300 \mathrm{~K}$ are connected via a narrow tube. One chamber has volume $V_{1}=1.0 \mathrm{~L}$ and the other has volume $V_{2}=r V_{1}$.
(a) Compute the RMS energy fluctuations of the particles in the smaller chamber when the volume ration is $r=2$.
(b) Compute the RMS energy fluctuations of the particles in the smaller chamber when the volume ration is $r=\infty$.

Solution :

For two systems in thermal contact (see Lecture Notes $\S 4.5$), the RMS energy fluctuation of system \#1 is $\Delta E_{1}=\sqrt{k_{\mathrm{B}} T^{2} \bar{C}_{V}}$, where

$$
\bar{C}_{V}=\frac{C_{V, 1} C_{V, 2}}{C_{V, 1}+C_{V, 2}}=\frac{r}{r+1} C_{V, 1} .
$$

Thus, with $C_{V}=\frac{3}{2} N k_{\mathrm{B}}=3 p V / T$, we have

$$
\Delta E_{1}=\sqrt{\frac{r}{r+1}} \cdot \sqrt{\frac{3}{2} p V k_{\mathrm{B}} T}=\sqrt{\frac{r}{r+1}} \cdot 7.93 \times 10^{-10} \mathrm{~J} .
$$

Thus, (a) for $r=2$ we have $\Delta E_{1}=648 \mathrm{pJ}$, and (b) for $r=\infty$ we have $\Delta E_{1}=793 \mathrm{pJ}$, where $1 \mathrm{pJ}=10^{-12} \mathrm{~J}$.
(3) Consider a system of N identical but distinguishable particles, each of which has a nondegenerate ground state with energy zero, and a g-fold degenerate excited state with energy $\varepsilon>0$.
(a) Let the total energy of the system be fixed at $E=M \varepsilon$, where M is the number of particles in an excited state. What is the total number of states $\Omega(E, N)$?
(b) What is the entropy $S(E, N)$? Assume the system is thermodynamically large. You may find it convenient to define $\nu \equiv M / N$, which is the fraction of particles in an excited state.
(c) Find the temperature $T(\nu)$. Invert this relation to find $\nu(T)$.
(d) Show that there is a region where the temperature is negative.
(e) What happens when a system at negative temperature is placed in thermal contact with a heat bath at positive temperature?

Solution :
(a) Since each excited particle can be in any of g degenerate energy states, we have

$$
\Omega(E, N)=\binom{N}{M} g^{M}=\frac{N!g^{M}}{M!(N-M)!} .
$$

(b) Using Stirling's approximation, we have

$$
S(E, N)=k_{\mathrm{B}} \ln \Omega(E, N)=-N k_{\mathrm{B}}\{\nu \ln \nu+(1-\nu) \ln (1-\nu)-\nu \ln g\},
$$

where $\nu=M / N=E / N \varepsilon$.
(c) The inverse temperature is

$$
\frac{1}{T}=\left(\frac{\partial S}{\partial E}\right)_{N}=\frac{1}{N \varepsilon}\left(\frac{\partial S}{\partial \nu}\right)_{N}=\frac{k_{\mathrm{B}}}{\varepsilon} \cdot\left\{\ln \left(\frac{1-\nu}{\nu}\right)+\ln g\right\},
$$

hence

$$
k_{\mathrm{B}} T=\frac{\varepsilon}{\ln \left(\frac{1-\nu}{\nu}\right)+\ln g} .
$$

Inverting,

$$
\nu(T)=\frac{g e^{-\varepsilon / k_{\mathrm{B}} T}}{1+g e^{-\varepsilon / k_{\mathrm{B}} T}} .
$$

(d) The temperature diverges when the denominator in the above expression for $T(\nu)$ vanishes. This occurs at $\nu=\nu^{*} \equiv g /(g+1)$. For $\nu \in\left(\nu^{*}, 1\right)$, the temperature is negative! This is technically correct, and a consequence of the fact that the energy is bounded for this system: $E \in[0, N \varepsilon]$. The entropy as a function of ν therefore has a maximum at $\nu=\nu^{*}$. The model is unphysical though in that it neglects various excitations such as kinetic energy (e.g. lattice vibrations) for which the energy can be arbitrarily large.
(e) When a system at negative temperature is placed in contact with a heat bath at positive temperature, heat flows from the system to the bath. The energy of the system therefore decreases, and since $\frac{\partial S}{\partial E}<0$, this results in a net entropy increase, which is what is demanded by the Second Law of Thermodynamics.
(4) Solve for the model in problem 3 using the ordinary canonical ensemble. The Hamiltonian is

$$
\hat{H}=\varepsilon \sum_{i=1}^{N}\left(1-\delta_{\sigma_{i}, 1}\right)
$$

where $\sigma_{i} \in\{1, \ldots, g+1\}$.
(a) Find the partition function $Z(T, N)$ and the Helmholtz free energy $F(T, N)$.
(b) Show that $\hat{M}=\frac{\partial \hat{H}}{\partial \varepsilon}$ counts the number of particles in an excited state. Evaluate the thermodynamic average $\nu(T)=\langle\hat{M}\rangle / N$.
(c) Show that the entropy $S=-\left(\frac{\partial F}{\partial T}\right)_{N}$ agrees with your result from problem 3 .

Solution :
(a) We have

$$
Z(T, N)=\operatorname{Tr} e^{-\beta \hat{H}}=\left(1+g e^{-\varepsilon / k_{\mathrm{B}} T}\right)^{N}
$$

The free energy is

$$
F(T, N)=-k_{\mathrm{B}} T \ln F(T, N)=-N k_{\mathrm{B}} T \ln \left(1+g e^{-\varepsilon / k_{\mathrm{B}} T}\right)
$$

(b) We have

$$
\hat{M}=\frac{\partial \hat{H}}{\partial \varepsilon}=\sum_{i=1}^{N}\left(1-\delta_{\sigma_{i}, 1}\right) .
$$

Clearly this counts all the excited particles, since the expression $1-\delta_{\sigma_{i}, 1}$ vanishes if $i=1$, which is the ground state, and yields 1 if $i \neq 1$, i.e. if particle i is in any of the g excited states. The thermodynamic average of \hat{M} is $\langle\hat{M}\rangle=\left(\frac{\partial F}{\partial \varepsilon}\right)_{T, N}$, hence

$$
\nu=\frac{\langle\hat{M}\rangle}{N}=\frac{g e^{-\varepsilon / k_{\mathrm{B}} T}}{1+g e^{-\varepsilon / k_{\mathrm{B}} T}},
$$

which agrees with the result in problem 3c.
(c) The entropy is

$$
S=-\left(\frac{\partial F}{\partial T}\right)_{N}=N k_{\mathrm{B}} \ln \left(1+g e^{-\varepsilon / k_{\mathrm{B}} T}\right)+\frac{N \varepsilon}{T} \frac{g e^{-\varepsilon / k_{\mathrm{B}} T}}{1+g e^{-\varepsilon / k_{\mathrm{B}} T}} .
$$

Working with our result for $\nu(T)$, we derive

$$
\begin{aligned}
1+g e^{-\varepsilon / k_{\mathrm{B}} T} & =\frac{1}{1-\nu} \\
\frac{\varepsilon}{k_{\mathrm{B}} T} & =\ln \left(\frac{g(1-\nu)}{\nu}\right) .
\end{aligned}
$$

Inserting these results into the above expression for S, we verify

$$
\begin{aligned}
S & =-N k_{\mathrm{B}} \ln (1-\nu)+N k_{\mathrm{B}} \nu \ln \left(\frac{g(1-\nu)}{\nu}\right) \\
& =-N k_{\mathrm{B}}\{\nu \ln \nu+(1-\nu) \ln (1-\nu)-\nu \ln g\},
\end{aligned}
$$

as we found in problem 3b.

