PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT #7

(1) A strange material satisfies $E(S, V, N) = a S^6 / V^3 N^2$.

- (a) What are the SI dimensions of *a*?
- (b) Find the equation of state relating p, T, and n = N/V.
- (c) Find the coefficient of thermal expansion $\alpha_p = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p$. Express your answer in terms of *T*.
- (d) Find the coefficient of isothermal compressibility $\kappa_{\rm T} = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T$. Express your answer in terms of p.

(2) ν moles of the substance in problem 1 execute a Carnot cycle between reservoirs at temperatures T_1 and T_2 . The top isotherm extends from volume V_A to V_B . Find the heat Q and work W for each leg of the cycle, and compute the cycle efficiency.

(3) An interacting diatomic gas obeys the equation of state

$$p(v-b) = RT \, e^{-a/v} \; ,$$

where $v = N_{\rm A} V / N$ is the molar volume.

- (a) Show that $E(T, V, N) = \frac{f}{2}Nk_{\rm B}T$, the same as for an ideal gas.
- (b) Find the molar specific heat c_p as a function of T and v.