## PHYSICS 140A: STATISTICAL PHYSICS HW ASSIGNMENT #6

- (1) A substance obeys the thermodynamic relation  $E=aS^4/VN^2$ .
  - (a) Compute the heat capacity  $C_{V,N}$  in terms of N, V, and T.
  - (b) Compute the equation of state relating p, V, N, and T.
  - (c) Compute the ratio  $C_{\varphi,N}/C_{V,N}$ , where  $C_{\varphi,N}$  is the heat capacity at constant  $\varphi$  and N, with  $\varphi = V^2/T$ .
- (2) Consider an engine cycle which follows the thermodynamic path in Fig. 1. The work material is  $\nu$  moles of a diatomic ideal gas. BC is an isobar (dp=0), CA is an isochore (dV=0), and along AB one has

$$p(V) = p_{\mathsf{B}} + (p_{\mathsf{A}} - p_{\mathsf{B}}) \cdot \sqrt{\frac{V_{\mathsf{B}} - V}{V_{\mathsf{B}} - V_{\mathsf{A}}}} \; . \label{eq:power_power}$$

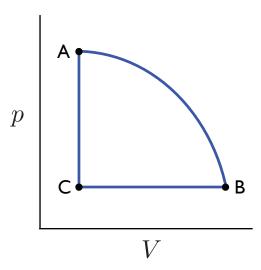



Figure 1: Thermodynamic path for problem 2.

- (a) Find the heat acquired  $Q_{\mathsf{AB}}$  and the work done  $W_{\mathsf{AB}}$ .
- (b) Find the heat acquired  $Q_{\rm BC}$  and the work done  $W_{\rm BC}.$
- (c) Find the heat acquired  $Q_{\mathsf{CA}}$  and the work done  $W_{\mathsf{CA}}$ .
- (d) Find the work W done per cycle.

**(3)** For each of the following differentials, determine whether it is exact or inexact. If it is exact, find the function whose differential it represents.

(a) 
$$xy^2 dx + x^2y dy$$

(b) 
$$z dx + x dy + y dz$$

(c) 
$$x^{-2} dx - 2x^{-3} dy$$

(d) 
$$e^x dx + \ln(y) dy$$