PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT #5

(1) Consider a system composed of N spin tetramers, each of which is described by a Hamiltonian

 $\hat{H} = -J(\sigma_1\sigma_2 + \sigma_1\sigma_3 + \sigma_1\sigma_4 + \sigma_2\sigma_3 + \sigma_2\sigma_4 + \sigma_3\sigma_4) - K\sigma_1\sigma_2\sigma_3\sigma_4 - \mu_0H(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4) \; .$

The individual tetramers are otherwise noninteracting.

- (a) Find the single tetramer partition function ζ . Suggestion: construct a table of all the possible tetramer states and their energies.
- (b) Find the magnetization per tetramer $m = \mu_0 \langle \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 \rangle$.
- (c) Suppose the tetramer number density is n_t . The magnetization density is $M = n_t m$. Find the zero field susceptibility $\chi(T) = (\partial M / \partial H)_{H=0}$.

(2) Look up the relevant parameters for the HCl molecule and find the corresponding value of Θ_{rot} . Then compute the value of the rotational partition function $\xi_{\text{rot}}(T)$ at T = 300 K, showing the contribution from each of the terms in eqn. 4.266 of the Lecture Notes.

(3) In a chemical reaction among σ species,

$$\zeta_1 \mathbf{A}_1 + \zeta_2 \mathbf{A}_2 + \dots + \zeta_\sigma \mathbf{A}_\sigma = 0 \; ,$$

where A_a is a chemical formula and ζ_a is a stoichiometric coefficient. When $\zeta_a > 0$, the corresponding A_a is a *product*; when $\zeta_a < 0$, A_a is a *reactant*. (See §2.13.1 of the Lecture Notes.) The condition for equilibrium is

$$\sum_{a=1}^{\sigma} \zeta_a \, \mu_a = 0 \, ,$$

where μ_a is the chemical potential of the a^{th} species. The *equilibrium constant* for the reaction is defined as

$$\kappa(T,p) = \prod_{a=1}^{\sigma} x_a^{\zeta_a} ,$$

where $x_a = n_a / \sum_{b=1}^{\sigma} n_b$ is the fraction of species a.

(a) Working in the grand canonical ensemble, show that

$$\kappa(T,p) = \prod_{a=1}^{\sigma} \left(\frac{k_{\rm B} T \,\xi_a(T)}{p \lambda_a^3} \right)^{\zeta_a} \,.$$

Note that the above expression does not involve any of the chemical potentials μ_a .

(b) Compute the equilibrium constant $\kappa(T,p)$ for the dissociative reaction $N_2 \rightleftharpoons 2N$ at T = 5000 K, assuming the following: the characteristic temperature of rotation and that of vibration of the N_2 molecule are $\Theta_{\rm rot} = 2.84$ K and $\Theta_{\rm vib} = 3350$ K. The dissociation energy, including zero point contributions, is $\Delta = 169.3$ kcal mol⁻¹. The electronic ground state of N_2 has no degeneracy, but that of the N atom is 4 due to electronic spin.