PHYSICS 140A : STATISTICAL PHYSICS
 HW ASSIGNMENT \#5

(1) Consider a system composed of N spin tetramers, each of which is described by a Hamiltonian

$$
\hat{H}=-J\left(\sigma_{1} \sigma_{2}+\sigma_{1} \sigma_{3}+\sigma_{1} \sigma_{4}+\sigma_{2} \sigma_{3}+\sigma_{2} \sigma_{4}+\sigma_{3} \sigma_{4}\right)-K \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}-\mu_{0} H\left(\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right) .
$$

The individual tetramers are otherwise noninteracting.
(a) Find the single tetramer partition function ζ. Suggestion: construct a table of all the possible tetramer states and their energies.
(b) Find the magnetization per tetramer $m=\mu_{0}\left\langle\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right\rangle$.
(c) Suppose the tetramer number density is n_{t}. The magnetization density is $M=n_{\mathrm{t}} m$. Find the zero field susceptibility $\chi(T)=(\partial M / \partial H)_{H=0}$.
(2) Look up the relevant parameters for the HCl molecule and find the corresponding value of $\Theta_{\text {rot }}$. Then compute the value of the rotational partition function $\xi_{\text {rot }}(T)$ at $T=$ 300 K , showing the contribution from each of the terms in eqn. 4.266 of the Lecture Notes.
(3) In a chemical reaction among σ species,

$$
\zeta_{1} \mathrm{~A}_{1}+\zeta_{2} \mathrm{~A}_{2}+\cdots+\zeta_{\sigma} \mathrm{A}_{\sigma}=0
$$

where A_{a} is a chemical formula and ζ_{a} is a stoichiometric coefficient. When $\zeta_{a}>0$, the corresponding A_{a} is a product; when $\zeta_{a}<0, \mathrm{~A}_{a}$ is a reactant. (See $\S 2.13 .1$ of the Lecture Notes.) The condition for equilibrium is

$$
\sum_{a=1}^{\sigma} \zeta_{a} \mu_{a}=0
$$

where μ_{a} is the chemical potential of the $a^{\text {th }}$ species. The equilibrium constant for the reaction is defined as

$$
\kappa(T, p)=\prod_{a=1}^{\sigma} x_{a}^{\zeta_{a}}
$$

where $x_{a}=n_{a} / \sum_{b=1}^{\sigma} n_{b}$ is the fraction of species a.
(a) Working in the grand canonical ensemble, show that

$$
\kappa(T, p)=\prod_{a=1}^{\sigma}\left(\frac{k_{\mathrm{B}} T \xi_{a}(T)}{p \lambda_{a}^{3}}\right)^{\zeta_{a}}
$$

Note that the above expression does not involve any of the chemical potentials μ_{a}.
(b) Compute the equilibrium constant $\kappa(T, p)$ for the dissociative reaction $\mathrm{N}_{2} \rightleftharpoons 2 \mathrm{~N}$ at $T=5000 \mathrm{~K}$, assuming the following: the characteristic temperature of rotation and that of vibration of the N_{2} molecule are $\Theta_{\text {rot }}=2.84 \mathrm{~K}$ and $\Theta_{\text {vib }}=3350 \mathrm{~K}$. The dissociation energy, including zero point contributions, is $\Delta=169.3 \mathrm{kcal} \mathrm{mol}^{-1}$. The electronic ground state of N_{2} has no degeneracy, but that of the N atom is 4 due to electronic spin.

