## PHYSICS 140A : STATISTICAL PHYSICS <br> HW ASSIGNMENT \#3

(1) Consider a system described by the Hamiltonian

$$
\hat{H}=-H \sum_{i=1}^{N} \sigma_{i}+\Delta \sum_{i=1}^{N}\left(1-\sigma_{i}^{2}\right)
$$

where each $\sigma_{i} \in\{-1,0,+1\}$.
(a) Compute the ordinary canonical partition function $Z(T, N, H, \Delta)$ and the free energy $F(T, N, H, \Delta)$.
(b) Find the magnetization $M(T, N, H, \Delta)$.
(c) Show that $\frac{\partial M}{\partial \Delta}=-\frac{\partial N_{0}}{\partial H}$, where $N_{0}=\sum_{i=1}^{N} \delta_{\sigma_{i}, 0}$.
(2) Consider a three-dimensional gas of $N$ identical particles of mass $m$, each of which has a magnetic dipole moment $\boldsymbol{m}=\mu_{0} \hat{\boldsymbol{n}}$, where $\hat{\boldsymbol{n}}$ is a three-dimensional unit vector. The Hamiltonian is

$$
\hat{H}=\sum_{i=1}^{N}\left[\frac{\boldsymbol{p}_{i}^{2}}{2 m}-\mu_{0} \boldsymbol{H} \cdot \hat{\boldsymbol{n}}_{i}\right] .
$$

(a) What is the grand potential $\Omega(T, V, \mu, \boldsymbol{H})$ ?
(b) Express $M$ in terms of $T, V, N$, and $\boldsymbol{H}$, where $N$ is the average number of particles.
(c) Find $M(T, V, N, \boldsymbol{H})$ to lowest order in the external field.

