PHYSICS 140A: STATISTICAL PHYSICS HW ASSIGNMENT #2

- (1) A box of volume V contains N_1 identical atoms of mass m_1 and N_2 identical atoms of mass m_2 .
 - (a) Compute the density of states $D(E, V, N_1, N_2)$.
 - (b) Let $x_1 \equiv N_1/N$ be the fraction of particles of species #1. Compute the statistical entropy $S(E, V, N, x_1)$.
 - (c) Under what conditions does increasing the fraction x_1 result in an increase in statistical entropy of the system? Why?
- (2) Two chambers containing Argon gas at p=1.0 atm and T=300 K are connected via a narrow tube. One chamber has volume $V_1=1.0$ L and the other has volume $V_2=r\,V_1$.
 - (a) Compute the RMS energy fluctuations of the particles in the smaller chamber when the volume ration is r = 2.
 - (b) Compute the RMS energy fluctuations of the particles in the smaller chamber when the volume ration is $r = \infty$.
- (3) Consider a system of N identical but distinguishable particles, each of which has a nondegenerate ground state with energy zero, and a g-fold degenerate excited state with energy $\varepsilon > 0$.
 - (a) Let the total energy of the system be fixed at $E = M\varepsilon$, where M is the number of particles in an excited state. What is the total number of states $\Omega(E, N)$?
 - (b) What is the entropy S(E,N)? Assume the system is thermodynamically large. You may find it convenient to define $\nu \equiv M/N$, which is the fraction of particles in an excited state.
 - (c) Find the temperature $T(\nu)$. Invert this relation to find $\nu(T)$.
 - (d) Show that there is a region where the temperature is negative.
 - (e) What happens when a system at negative temperature is placed in thermal contact with a heat bath at positive temperature?

(4) Solve for the model in problem 3 using the ordinary canonical ensemble. The Hamiltonian is

$$\hat{H} = \varepsilon \sum_{i=1}^{N} \left(1 - \delta_{\sigma_i, 1} \right) ,$$

where $\sigma_i \in \{1, \dots, g+1\}$.

- (a) Find the partition function Z(T, N) and the Helmholtz free energy F(T, N).
- (b) Show that $\hat{M}=\frac{\partial \hat{H}}{\partial \varepsilon}$ counts the number of particles in an excited state. Evaluate the thermodynamic average $\nu(T)=\langle \hat{M} \rangle/N$.
- (c) Show that the entropy $S=-\left(\frac{\partial F}{\partial T}\right)_N$ agrees with your result from problem 3.