PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT \#2

(1) A box of volume V contains N_{1} identical atoms of mass m_{1} and N_{2} identical atoms of mass m_{2}.
(a) Compute the density of states $D\left(E, V, N_{1}, N_{2}\right)$.
(b) Let $x_{1} \equiv N_{1} / N$ be the fraction of particles of species \#1. Compute the statistical entropy $S\left(E, V, N, x_{1}\right)$.
(c) Under what conditions does increasing the fraction x_{1} result in an increase in statistical entropy of the system? Why?
(2) Two chambers containing Argon gas at $p=1.0 \mathrm{~atm}$ and $T=300 \mathrm{~K}$ are connected via a narrow tube. One chamber has volume $V_{1}=1.0 \mathrm{~L}$ and the other has volume $V_{2}=r V_{1}$.
(a) Compute the RMS energy fluctuations of the particles in the smaller chamber when the volume ration is $r=2$.
(b) Compute the RMS energy fluctuations of the particles in the smaller chamber when the volume ration is $r=\infty$.
(3) Consider a system of N identical but distinguishable particles, each of which has a nondegenerate ground state with energy zero, and a g-fold degenerate excited state with energy $\varepsilon>0$.
(a) Let the total energy of the system be fixed at $E=M \varepsilon$, where M is the number of particles in an excited state. What is the total number of states $\Omega(E, N)$?
(b) What is the entropy $S(E, N)$? Assume the system is thermodynamically large. You may find it convenient to define $\nu \equiv M / N$, which is the fraction of particles in an excited state.
(c) Find the temperature $T(\nu)$. Invert this relation to find $\nu(T)$.
(d) Show that there is a region where the temperature is negative.
(e) What happens when a system at negative temperature is placed in thermal contact with a heat bath at positive temperature?
(4) Solve for the model in problem 3 using the ordinary canonical ensemble. The Hamiltonian is

$$
\hat{H}=\varepsilon \sum_{i=1}^{N}\left(1-\delta_{\sigma_{i}, 1}\right)
$$

where $\sigma_{i} \in\{1, \ldots, g+1\}$.
(a) Find the partition function $Z(T, N)$ and the Helmholtz free energy $F(T, N)$.
(b) Show that $\hat{M}=\frac{\partial \hat{H}}{\partial \varepsilon}$ counts the number of particles in an excited state. Evaluate the thermodynamic average $\nu(T)=\langle\hat{M}\rangle / N$.
(c) Show that the entropy $S=-\left(\frac{\partial F}{\partial T}\right)_{N}$ agrees with your result from problem 3 .

