PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT #1

(1) The *information entropy* of a distribution $\{p_n\}$ is defined as $S = -\sum_n p_n \log_2 p_n$, where n ranges over all possible configurations of a given physical system and p_n is the probability of the state $|n\rangle$. If there are Ω possible states and each state is equally likely, then $S = \log_2 \Omega$, which is the usual dimensionless entropy in units of $\ln 2$.

Consider a normal deck of 52 distinct playing cards. A new deck always is prepared in the same order ($A \spadesuit 2 \spadesuit \cdots K \clubsuit$).

- (a) What is the information entropy of the distribution of new decks?
- (b) What is the information entropy of a distribution of completely randomized decks?

Now consider what it means to shuffle the cards. In an ideal *riffle shuffle*, the deck is split and divided into two equal halves of 26 cards each. One then chooses at random whether to take a card from either half, until one runs through all the cards and a new order is established (see figure).

Figure 1: The riffle shuffle.

- (c) What is the increase in information entropy for a distribution of new decks that each have been shuffled once?
- (d) Assuming each subsequent shuffle results in the same entropy increase (*i.e.* neglecting redundancies), how many shuffles are necessary in order to completely randomize a deck?
- (e) If in parts (b), (c), and (d), you were to use Stirling's approximation,

$$K! \sim K^K \, e^{-K} \sqrt{2\pi K} \; ,$$

how would your answers have differed?

(2) In problem #1, we ran across Stirling's approximation,

$$\ln K! \sim K \ln K - K + \frac{1}{2} \ln(2\pi K) + \mathcal{O}\left(K^{-1}\right),$$

for large *K*. In this exercise, you will derive this expansion.

(a) Start by writing

$$K! = \int_{0}^{\infty} dx \ x^{K} \ e^{-x} \ ,$$

and define $x \equiv K(t+1)$ so that $K! = K^{K+1} e^{-K} F(K)$, where

$$F(K) = \int_{-1}^{\infty} dt \ e^{Kf(t)} \ .$$

Find the function f(t).

- (b) Expand $f(t) = \sum_{n=0}^{\infty} f_n t^n$ in a Taylor series and find a general formula for the expansion coefficients f_n . In particular, show that $f_0 = f_1 = 0$ and that $f_2 = -\frac{1}{2}$.
- (c) If one ignores all the terms but the lowest order (quadratic) in the expansion of f(t), show that

$$\int_{-1}^{\infty} dt \ e^{-Kt^2/2} = \sqrt{\frac{2\pi}{K}} - R(K) \ ,$$

and show that the remainder R(K) > 0 is bounded from above by a function which decreases faster than any polynomial in 1/K.

(d) For the brave only! – Find the $\mathcal{O}(K^{-1})$ term in the expansion for $\ln K!$.

(3) A six-sided die is loaded so that the probability to throw a three is twice that of throwing a two, and the probability of throwing a four is twice that of throwing a five.

- (a) Find the distribution $\{p_n\}$ consistent with maximum entropy, given these constraints.
- (b) Assuming the maximum entropy distribution, given two such identical dice, what is the probability to roll a total of seven if both are thrown simultaneously?
- (4) The probability density for a random variable *x* is given by the Lorentzian,

$$P(x) = \frac{\gamma}{\pi} \cdot \frac{1}{x^2 + \gamma^2} \,.$$

Consider the sum $X_N = \sum_{i=1}^N x_i$, where each x_i is independently distributed according to $P(x_i)$. Find the probability $\Pi_N(Y)$ that $|X_N| < Y$, where Y > 0 is arbitrary.