PHYSICS 140A : STATISTICAL PHYSICS FINAL EXAMINATION
 100 POINTS TOTAL

(1) Consider a system of N independent, distinguishable $S=1$ objects, each described by the Hamiltonian

$$
\hat{h}=\Delta S^{2}-\mu_{0} \mathrm{H} S,
$$

where $S \in\{-1,0,1\}$.
(a) Find $F(T, \mathrm{H}, N)$.
[10 points]
(b) Find the magnetization $M(T, \mathrm{H}, N)$.
[5 points]
(c) Find the zero field susceptibility, $\chi(T)=\left.\frac{1}{N} \frac{\partial M}{\partial \mathrm{H}}\right|_{\mathrm{H}=0}$.
[5 points]
(d) Find the zero field entropy $S(T, \mathrm{H}=0, N)$. (Hint : Take $H \rightarrow 0$ first.)
[5 points]
(2) A classical gas consists of particles of two species: A and B. The dispersions for these species are

$$
\varepsilon_{\mathrm{A}}(\boldsymbol{p})=\frac{\boldsymbol{p}^{2}}{2 m} \quad, \quad \varepsilon_{\mathrm{B}}(\boldsymbol{p})=\frac{\boldsymbol{p}^{2}}{4 m}-\Delta
$$

In other words, $m_{\mathrm{A}}=m$ and $m_{\mathrm{B}}=2 m$, and there is an additional energy offset $-\Delta$ associated with the B species.
(a) Find the grand potential $\Omega\left(T, V, \mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right)$.
[10 points]
(b) Find the number densities $n_{\mathrm{A}}\left(T, \mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right)$ and $n_{\mathrm{B}}\left(T, \mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right)$.
[5 points]
(c) If $2 \mathrm{~A} \rightleftharpoons \mathrm{~B}$ is an allowed reaction, what is the relation between n_{A} and n_{B} ?
(Hint: What is the relation between μ_{A} and μ_{B} ?)
[5 points]
(d) Suppose initially that $n_{\mathrm{A}}=n$ and $n_{\mathrm{B}}=0$. Find n_{A} in equilibrium, as a function of T and n and constants.
[5 points]
(3) A branch of excitations for a three-dimensional system has a dispersion $\varepsilon(\boldsymbol{k})=A|\boldsymbol{k}|^{2 / 3}$. The excitations are bosonic and are not conserved; they therefore obey photon statistics.
(a) Find the single excitation density of states per unit volume, $g(\varepsilon)$. You may assume that there is no internal degeneracy for this excitation branch.
[10 points]
(b) Find the heat capacity $C_{V}(T, V)$.
[5 points]
(c) Find the ratio $E / p V$.
[5 points]
(d) If the particles are bosons with number conservation, find the critical temperature T_{c} for Bose-Einstein condensation.
[5 points]
(4) Short answers:
(a) What are the conditions for a dynamical system to exhibit Poincaré recurrence? [3 points]
(b) Describe what the term ergodic means in the context of a dynamical system. [3 points]
(c) What is the microcanonical ensemble? [3 points]
(d) A system with $L=6$ single particle levels contains $N=3$ bosons. How many distinct many-body states are there? [3 points]
(e) A system with $L=6$ single particle levels contains $N=3$ fermions. How many distinct many-body states are there? [3 points]
(f) Explain how the Maxwell-Boltzmann limit results, starting from the expression for $\Omega_{\mathrm{BE} / \mathrm{FD}}(T, V, \mu)$. [3 points]
(g) For the Dieterici equation of state, $p(1-b n)=n k_{\mathrm{B}} T \exp \left(-a n / k_{\mathrm{B}} T\right)$, find the second virial coefficient $B_{2}(T)$. [3 points]
(h) Explain the difference between the Einstein and Debye models for the specific heat of a solid. [4 points]
(i) Who composed the song yerushalayim shel zahav? [50 quatloos extra credit]

