PHYSICS 140A : STATISTICAL PHYSICS
 FINAL EXAMINATION

Instructions: Do problem 4 (34 points) and any two of problems 1, 2, and 3 (33 points each)
(1) A noninteracting system consists of N dimers. Each dimer consists of two spins, S and σ, where $S \in\{-1,0,+1\}$ and $\sigma \in\{-1,+1\}$. The Hamiltonian is

$$
\hat{H}=-J \sum_{i=1}^{N} S_{i} \sigma_{i}-\mu_{0} H \sum_{i=1}^{N} S_{i} .
$$

Thus, the individual dimer Hamiltonian is $h=-J S \sigma-\mu_{0} H S$.
(a) Find the N-dimer free energy $F(T, N)$.
(b) Find the average $\langle S\rangle$ and the zero field susceptibility $\chi_{S}(T)=\left.\frac{\partial\langle S\rangle}{\partial H}\right|_{H=0}$.
(c) Find the average $\langle\sigma\rangle$ and the zero field susceptibility $\chi_{\sigma}(T)=\left.\frac{\partial\langle\sigma\rangle}{\partial H}\right|_{H=0}$.
(d) Examine the $J \rightarrow 0$ limits of $\chi_{S}(T)$ and $\chi_{\sigma}(T)$ and interpret your results physically.
(2) Recall that a van der Waals gas obeys the equation of state

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=R T
$$

where v is the molar volume. We showed that the energy per mole of such a gas is given by

$$
\varepsilon(T, v)=\frac{1}{2} f R T-\frac{a}{v},
$$

where T is temperature and f is the number of degrees of freedom per particle.
(a) For an ideal gas, the adiabatic equation of state is $v T^{f / 2}=$ const. Find the adiabatic equation of state (at fixed particle number) for the van der Waals gas.
(b) One mole of a van der Waals gas is used as the working substance in a Carnot engine (see Fig. 1). Find the molar volume at v_{C} in terms of $v_{\mathrm{B}}, T_{1}, T_{2}$, and constants.
(c) Find the heat Q_{AB} absorbed by the gas from the upper reservoir.
(d) Find the work done per cycle, $W_{\text {cyc }}$. Hint: you only need to know $Q_{A B}$ and the cycle efficiency η.

Figure 1: The Carnot cycle.
(3) In homework assignment \#9, you showed that the grand partition function for a gas of q-state parafermions is

$$
\Xi(T, V, \mu)=\prod_{\alpha}\left(\frac{1-e^{(q+1)\left(\mu-\varepsilon_{\alpha}\right) / k_{\mathrm{B}} T}}{1-e^{\left(\mu-\varepsilon_{\alpha}\right) / k_{\mathrm{B}} T}}\right),
$$

where the product is over all single particle states. Consider now the case where the number of parafermions is not conserved, hence $\mu=0$. We call such particles paraphotons.
(a) What is the occupancy $n(\varepsilon, T)$ of q-state paraphotons of energy ε ?
(b) Suppose the dispersion is the usual $\varepsilon(\boldsymbol{k})=\hbar c k$. Assuming $\mathrm{g}=1$, find the single particle density of states $g(\varepsilon)$ in three space dimensions.
(c) Find the pressure $p(T)$. You may find the following useful:

$$
\int_{0}^{\infty} d t \frac{t^{r-1}}{e^{t}-1}=\Gamma(r) \zeta(r) \quad, \quad \int_{0}^{\infty} d t t^{r-1} \ln \left(\frac{1}{1-e^{-t}}\right)=\Gamma(r) \zeta(r+1)
$$

(d) Show that $p=C_{q} n k_{\mathrm{B}} T$, where n is the number density, and C_{q} is a dimensionless constant which depends only on q.
(4) Provide brief but substantial answers to the following:
(a) A particle in $d=3$ dimensions has the dispersion $\varepsilon(\boldsymbol{k})=\varepsilon_{0} \exp (k a)$. Find the density of states per unit volume $g(\varepsilon)$. Sketch your result.
(b) Find the information entropy in the distribution $p_{n}=C e^{-\lambda n}$, where $n \in\{0,1,2, \ldots\}$. Choose C so as to normalize the distribution.
(c) An ideal gas at temperature $T=300 \mathrm{~K}$ undergoes an adiabatic free expansion which results in a doubling of its volume. What is the final temperature?
(d) For an N-particle noninteracting system, sketch the contributions ΔC_{V} to the heat capacity versus temperature for (i) a vibrational mode at energy $\hbar \omega_{0}$, and (ii) a two-level (Schottky) defect with energy splitting $\Delta=\varepsilon_{1}-\varepsilon_{0}$. Take care to identify any relevant characteristic temperatures, as well as the limiting values of ΔC_{V}.
(5) Write a well-defined expression for the greatest possible number expressible using only five symbols. Examples: $1+2+3,10^{100}, \Gamma(99)$. [50 quatloos extra credit]

