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1a) A spin- 1
2 particle, such as an electron, proton or neutron, has two possible

azimuthal components of spin, ms, + 1
2 and − 1

2 . Thus, the spinor must have
two components to represent these possible states, sometimes referred to as up
and down.

1b) A spin-1 particle, such as a photon, has three possible azimuthal com-
ponents of spin, ms; -1,0,+1. Thus, the spinor must have three components to
represent these possible states.

1c), see problem 4.30 in Griffiths. To find the spin component along a
particular axis, first construct a spin operator whose eigenvalues are ± h̄

2 by pro-

jecting ~S = (Sx, Sy, Sz) along the axis of interest, n̂. Here n̂ = (sin θ, 0, cos θ) =
1√
2
(1, 0, 1). The projection is given by,

Sn = S · n̂ =
h̄

2
√

2

(
1 1
1 −1

)
(1)

We are interested in the eigenstate of − h̄
2 . Thus, the corresponding (normalized)

eigenvector is

χ
(n̂)
− =

1√
2

(
+
√

(1− 1√
2
)

−
√

(1 + 1√
2
)

)
(2)

To get the probability that we measured it to have a value + h̄
2 along the x-

direction, i.e. that it is in the χ
(x̂)
+ = 1√

2

(
1
1

)
state,

P = |χ∗(x̂)
+ · χ(n̂)

− |2 =
1

2

(
1− 1√

2

)
≈ 0.15 (3)

1d) The Hamiltonian of a particle with spin at rest is given by H = −~µ · ~B.

Thus for spin- 1
2 , with magnetic field ~B = B0(0, sinα, cosα)

H = −γ~S · ~B = γB0
h̄

2

(
− cosα i sinα
−i sinα cosα

)
(4)

1e) Similar to problem 1d, we construct the Hamiltonian for a magnetic field
along the y-direction.

H = −γ~S · ~B = −γB0Sy = −γB0
h̄

2

(
0 −i
i 0

)
(5)
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Notice that the Hamiltonian here is proportional to the y-component of the spin
operator. Thus, it will have the same eigenstates and eigenvalues scaled by the
multiplicative constant;

E± = ∓γB0
h̄

2
(6)

ψ± =
1√
2

(
1

±i

)
(7)

2a) The fine structure correction is the result of two perturbations of equal
magnitude. First, the relativistic correction

H ′r = − p4

8m3c3
→ E

(1)
r(n,l) = − (E

(0)
n )2

2mc2

[
4n

l + 1
2

− 3

]
(8)

Second, the spin-orbit correction, due to the interaction of the magnetic field
(that is seen in the electron’s reference frame due to its angular momentum
around a radial electric field created by the proton) and the electron’s spin,

H ′so =
e2

8πε0

1

m2c2r3
~S · ~L→ E

(1)
so(n,l,j) = −n (E

(0)
n )2

mc2

[
j(j + 1)− l(l + 1)− 3

4

l(l + 1
2 )(l + 1)

]
(9)

2b) If we apply a large magnetic field (in comparison to the Fine Structure
perturbation), the magnetic moments (due to the spin and angular momentum
of the electron) will align with this magnetic field. Thus, we say the “good”
states are those described by quantum numbers ml and ms. In this case the
relativistic contribution remains the same, while the spin-orbit coupling is re-
stricted to contribution from Sz and Lz.

2c) Combining the relativistic and spin-orbit energy correction, we see that

E
(1)
fs(n,j) = E(0)

n

[
1 +

α2

n2

(
n

j + 1
2

− 3

4

)]
(10)

From this, we see that we still have a degeneracy of states, namely within j.
The degeneracy will be 2j + 1, due to all the possible mj states. Recall, that
for the unperturbed hydrogen, the degeneracy was 2n2, if we took into account
the spin degeneracy. Thus, for the ground state of Hydrogen, the degeneracy
remains the same and is 2.

2d) To lift or break the degeneracy means to split indistinguishable states,
states with the same eigenvalue, into states with different eigenvalues.

2e) We can lift the degeneracy of the Fine Structure correction by applying
an external magnetic field. This is known as the Zeeman splitting.

3a) The Hyperfine structure of the hydrogen atom is the result of spin-spin
interaction between the electron’s spin and the nucleus (proton) spin. Since
both spins give a magnetic dipole, this is a magnetic dipole-dipole interaction.

3b) If we consider only the Hyperfine correction, the ground state will split
into two states; the Singlet and the Triplet. The degeneracy is clear from their
names and is also given by 2f+1. The new ground state is the Singlet state.
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3c) Again, this degeneracy can by split by the application of an external
magnetic field.

3d) Although, the energy corrections for hyperfine is on the order of me

mp
α4mc2,

which is smaller than the fine structure correction by the factor me

mp
≈ 1

2000 , we

can treat the Hyperfine correction as a separate effect in the case for states
with angular momentum equal to zero. In this case, the spin quantum number
describes the good states.

4) See 6.1 of Griffiths.
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