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1. PDG

See Table of Contents, particularly Clebsch-Gordan coefficients and Spher-
ical harmonics on pg 299. The magnetic moment is given by µ ∝ g

m . Both
the mass and the magnetic moment anomaly is known with better preci-
sion for the electron than the muon. Recall, that for products, the prop-
agation of error can be written (

σf
f )2 =

∑
j (

σgj
gj

)2

j
, where f =

∏
j gj .

Thus,
σµe
µe

= 2.2 × 10−8, dominated by the error in mass. Likewise,
σµµ
µµ

= 3.3× 10−8, again dominated by the error in mass. It is difficult to

compare the uncertainty of the electron’s magnetic and dipole moment,
since they have different units. Although, the electric dipole moment is
known to more significant digits in cgs units, the normalized magnetic
moment is better known than the normalized dipole moment. All leptons
are spin- 1

2 particles.

2. Griffiths 2.11

Consider the harmonic oscillator with solutions, ψ0 = αeξ
2/2, ψ1 =

√
2αξeξ

2/2.
Using the Gaussian integrals, we see that the expectation value of position
operators 〈

0|x̂l|0
〉

=

{
(l)!

2l(l/2)!

(
h̄
mω

)l/2
l even

0 l odd
(1)

〈
1|x̂l|1

〉
=

{
(l+2)!

2l+1(l/2+1)!

(
h̄
mω

)l/2
l even

0 l odd
(2)

Using the momentum operator p̂ = h̄
i

√
πα2 ∂

∂ξ and the properties of Her-
mite Polynomials

〈
n|p̂l|n

〉
= (ih̄

√
πα2)l

l≤n∑
k=0

(
l

k

)[
2kn!

(n− k)!

] 1
2

(−1)k
〈
n|Hl−k( ξ√

2
)|n− k

〉
(3)

Solving this explicitly for n = 0,

〈
0|p̂l|0

〉
=

{
(l−1)!!

2 (mh̄ω)
l
2 l even

0 l odd
(4)
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Similarly for n = 1

〈
1|p̂l|1

〉
=

{
3(l−1)!!

2 (mh̄ω)
l
2 l even

0 l odd
(5)

Recall that the variance is σ2
q =< q2 > − < q >2. Therefore for n = 0,

σx =
(

h̄
2mω

) 1
2

σp =
(
mh̄ω

2

) 1
2

σxσp = h̄
2 ≥

h̄
2

(6)

Similarly, for n = 1,

σx =
(

3h̄
2mω

) 1
2

σp =
(

3mh̄ω
2

) 1
2

σxσp = 3h̄
2 ≥

h̄
2

(7)

We can obtain the kinetic energy,

< T >= <p2>
2m =

{
1
4 h̄ω n = 0
3
4 h̄ω n = 1

(8)

and potential energy,

< V >= mω2<x2>
2 =

{
1
4 h̄ω n = 0
3
4 h̄ω n = 1

(9)

Thus, the total energy

< H >=< K > + < V >=

{
1
2 h̄ω = E0 n = 0
3
2 h̄ω = E1 n = 1

(10)

3. Griffiths 9.2

Let us solve the two state time evolution equations for a time-independent
purturbing Hamiltonian, H ′.

ċa(t) = − i
h̄H
′
abe
−iω0tcb(t)

ċb(t) = − i
h̄H
′
bae

+iω0tca(t)
(11)

Let us turn these two first-order differential equation into a single second-
order differential equation by differentiating one of them and substituting,

c̈b − iω0ċb +
1

h̄2 |H
′
ab|2cb = 0 (12)

We have used the fact that H
′∗
ba = H ′ab. This linear homogeneous second-

order differential equation with constant coefficients has the solution,

cb(t) = Aeλ+t +Beλ−t (13)
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where λ± = iω0±ω
2 , and ω ≡

√
ω2

0 + 4
h̄2 |H ′ab|2. Since cb(0) = 0 we see that

A = −B and thus we can rewrite this solution as,

cb(t) = Aei
ω0
2 t sin

(
ω
2 t
)

(14)

We can find ca from ċb, where ċb = Aei
ω0
2 t
[
ω
2 cos

(
ω
2 t
)

+ iω0

2 sin
(
ω
2 t
)]

.
Therefore,

ca(t) = i
h̄ω

2H ′ba
Ae−i

ω0
2 t
[
cos
(
ω
2 t
)

+ i
ω0

ω
sin
(
ω
2 t
)]

(15)

We have the initial condition that ca(0) = 1, thus A = −i 2H′ba
h̄ω . We see

that

|ca(t)|2 + |cb(t)|2 = cos2
(ω

2
t
)

+ sin2
(ω

2
t
)[ω2

0 + 4
h̄2 |H ′ba|2

]
ω2

= 1 (16)

4. Griffith 9.9

If we consider a ground state only, the density of states is given by the

degeneracy. Thus the energy density will be ρg.s.(ω) = h̄ω3

π2c3 . Using the
incoherent and unpolarized transition rate,

Ra→b =
π

3ε0h̄
2 |℘|

2ρ(ω0) =
|℘|2ω3

0

3ε0h̄πc3
≡ A (17)

5. Griffith 9.17

Let us consider an infinite potential well, with solutions ψn =
√

2
a sin

(
nπ
a x
)
ei
En
h̄ t,

where En = n2π2h̄2

2ma2 . Let us temporarily offset the Hamiltonian by a
uniform potential V0(t) in the period t : [0, T ]. We may solve the ex-
act probability amplitudes from, ċm(t) = − i

h̄

∑
n cnH

′
mne

iωmnt, where

ωmn = Em−En
h̄ , H ′mn =< ψm|H ′|ψn >= V0(t)δmn. Thus

ċm(t) = − i
h̄
cmV0(t) (18)

which has the solution,
cm(t) = cm(0)eiΦ (19)

where the phase change is given by Φ = − 1
h̄

∫ T
0
dt′ V0(t′). Using first-order

perturbation theory, we find cm(t) = 0, m 6= N , and cN (t) = 1 + iΦ. It is
clear that this is the same answer as the exact result Taylor expanded to
first-order with small phase.
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