PHYS 4D
 Solution to HW 3

January 20, 2011

Problem Giancoli 31-34 (II) Estimate the radiation pressure due to a $75-\mathrm{W}$ bulb at a distance of 8.0 cm from the center of the bulb. Estimate the force exerted on your fingertip if you place it at this point.

Solution: Using Eq. 31-21a,

$$
P=\frac{\bar{S}}{c}=\frac{\frac{P}{4 \pi d^{2}}}{c}=\frac{\frac{75 W}{4 \pi\left(8.0 \times 10^{-2} \mathrm{~m}\right)^{2}}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=3.1 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2} .
$$

The force is pressure times area. We approximate the area of a fingertip to be $1.0 \mathrm{~cm}^{2}$,

$$
F=P A=\left(3.1 \times 10^{-6} N / m^{2}\right)\left(1.0 \times 10^{-4} \mathrm{~m}^{2}\right)=3.1 \times 10^{-10} \mathrm{~N} .
$$

Problem Giancoli 31-35 (II) Laser light can be focused (at best) to a spot with a radius r equal to its wavelength λ. Suppose that a 1.0- W beam of green laser light $\left(\lambda=5 \times 10^{-7} \mathrm{~m}\right)$ is used to form such a spot and that a cylindrical particle of about that size (let the radius and height equal r) is illuminated by the laser as shown in Fig. 31-23. Estimate the acceleration of the particle, if its density equals that of water and it absorbs the radiation. [This order-of-magnitude calculation convinced researchers of the feasibility of "optical tweezers," p. 829.]

Solution:

$$
\begin{gathered}
\bar{S} A=\frac{d U}{d t}=1.0 \mathrm{~W} \\
a=\frac{F}{m}=\frac{P A}{m}=\frac{\frac{\bar{S}}{c} A}{m}=\frac{\frac{1}{c} \frac{d U}{d t}}{\rho_{\mathrm{H}_{2} \mathrm{O}} \pi r^{2} r}=8 \times 10^{6} \mathrm{~m} / \mathrm{s}^{2} .
\end{gathered}
$$

Problem Giancoli 31-37 What size should the solar panel on a satellite orbiting Jupiter be if it is to collect the same amount of radiation from the Sun as a $1.0-\mathrm{m}^{2}$ solar panel on a satellite orbiting Earth?

Solution: The intensity from a point source is inversely proportional to the distance from the source,

$$
\frac{I_{\text {Earth }}}{I_{\text {Jupiter }}}=\frac{r_{\text {Sun-Jupiter }}^{2}}{r_{\text {Sun-Earth }}^{2}}=\frac{\left(7.78 \times 10^{11} m\right)^{2}}{\left(1.496 \times 10^{11} m\right)^{2}}=27.0
$$

So it would take an area of $27 m^{2}$ at Jupiter to collect the same radiation as a $1.0 \mathrm{~m}^{2}$ solar panel at the Earth.
Problem Giancoli 31-38 (1) What is the range of wavelengths for (a) FM radio (88 MHz to 108 MHz) and (b) AM radio $(535 \mathrm{kHz}$ to 1700 kHz)?

Solution:

(a) For FM radio we have the following

$$
\lambda_{\min }=\frac{c}{f}=\frac{\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(1.08 \times 10^{8} \mathrm{~Hz}\right)}=2.78 \mathrm{~m}, \lambda_{\max }=\frac{c}{f}=\frac{\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(8.8 \times 10^{7} \mathrm{~Hz}\right)}=3.41 \mathrm{~m}
$$

(b) For AM radio we have the following

$$
\lambda_{\min }=\frac{c}{f}=\frac{\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(1.7 \times 10^{6} \mathrm{~Hz}\right)}=180 \mathrm{~m}, \lambda_{\max }=\frac{c}{f}=\frac{\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(5.35 \times 10^{5} \mathrm{~Hz}\right)}=561 \mathrm{~m}
$$

Problem Giancoli 31-39 (I) Estimate the wavelength for 1.9-GHz cell phone reception.

Solution:

$$
\lambda=\frac{c}{f}=\frac{\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(1.9 \times 10^{9} \mathrm{~Hz}\right)}=0.16 \mathrm{~m}
$$

Problem Giancoli 31-42 (II) A satellite beams microwave radiation with a power of 12 kW toward the Earth's surface, 550 km away. When the beam strikes Earth, its circular diameter is about 1500 m . Find the rms electric field strength of the beam at the surface of the Earth.

Solution:

$$
\begin{aligned}
S & =\frac{P}{A}=c \varepsilon_{0} E_{r m s}^{2} \rightarrow \\
E_{r m s} & =\sqrt{\frac{P}{A c \varepsilon_{0}}}=\sqrt{\frac{1.2 \times 10^{4} \mathrm{~W}}{\pi(750 \mathrm{~m})^{2}\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(8.85 \times 10^{-12} C^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)}}=1.6 \mathrm{~V} / \mathrm{m} .
\end{aligned}
$$

Problem Giancoli 31-55 A point source emits light energy uniformly in all directions at an average rate P_{0} with a single frequency f. Show that the peak electric field in the wave is given by

$$
E_{0}=\sqrt{\frac{\mu_{0} c P_{0}}{2 \pi r^{2}}}
$$

Solution:

$$
\begin{aligned}
S & =\frac{P_{0}}{A}=\frac{P_{0}}{4 \pi r^{2}}=\frac{1}{2} c \varepsilon_{0} E_{0}^{2}=\frac{1}{2} c\left(\frac{1}{c^{2} \mu_{0}}\right) E_{0}^{2} \\
& \rightarrow \frac{1}{2} c\left(\frac{1}{c^{2} \mu_{0}}\right) E_{0}^{2}=\frac{P_{0}}{4 \pi r^{2}} \\
& \rightarrow E_{0}=\sqrt{\frac{P_{0} c \mu_{0}}{2 \pi r^{2}}}
\end{aligned}
$$

Problem Giancoli 31-56 Suppose a $35-\mathrm{kW}$ radio station emits EM waves uniformly in all directions. (a) How much energy per second crosses a $1.0-\mathrm{m} 2$ area 1.0 km from the transmitting antenna?

Solution: (a) The power crossing a given area is the intensity times the area. The intensity is the total power through the area of a sphere centered at the source,

$$
P=I A=\frac{P_{0}}{A_{\text {total }}} A=\frac{35000 \mathrm{~W}}{4 \pi\left(1.0 \times 10^{3} \mathrm{~m}\right)^{2}}(1.0 \mathrm{~m})^{2}=2.8 \mathrm{~mW}
$$

(b) What is the rms magnitude of the E field at this point, assuming the station is operating at full power? What is the rms voltage induced in a $1.0-\mathrm{m}$-long vertical car antenna (c) $r_{1}=1.0 \mathrm{~km}$ away, (d) $r_{2}=50 \mathrm{~km}$ away?

Solution: (b) We find the rms value of the electric field from the intensity, which is the magnitude of the Poynting vector.

$$
\begin{aligned}
S & =c \varepsilon_{0} E_{r m s}^{2}=\frac{P}{4 \pi r^{2}} \\
& \rightarrow E_{r m s}=\sqrt{\frac{P}{4 \pi r_{1}^{2} c \varepsilon_{0}}}=1.024 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

(c) The voltage over the length of the antenna is the electric field times the length of the antenna.

$$
V_{r m s}=E_{r m s} d=(1.024 \mathrm{~V} / \mathrm{m})(1.0 \mathrm{~m})=1.0 \mathrm{~V}
$$

(d) We calculate the electric field at the new distance, and then calculate the voltage

$$
E_{r m s}=\sqrt{\frac{P}{4 \pi r_{2}^{2} c \varepsilon_{0}}}=2.048 \times 10^{-2} V / m
$$

$$
V_{r m s}=E_{r m s} d=\left(2.048 \times 10^{-2} V / m\right)(1.0 m)=2.0 \times 10^{-2} V .
$$

Problem Giancoli 31-58 In free space ("vacuum"), where the net charge and current flow is zero, the speed of an EM wave is given by $v=1 / \sqrt{\varepsilon_{0} \mu_{0}}$. If, instead, an EM wave travels in a nonconducting ("dielectric") material with dielectric constant K, then $v=1 / \sqrt{K \varepsilon_{0} \mu_{0}}$. For frequencies corresponding to the visible spectrum (near $5 \times 10^{14} \mathrm{~Hz}$), the dielectric constant of water is 1.77 . Predict the speed of light in water and compare this value (as a percentage) with the speed of light in a vacuum.

Solution: The speed of light in water is

$$
\begin{aligned}
v_{\text {water }} & =\frac{1}{\sqrt{K \varepsilon_{0} \mu_{0}}}=\frac{1}{\sqrt{K}} c=\frac{1}{\sqrt{1.77}}\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=2.25 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
\frac{v_{\text {water }}}{c} & =\frac{1}{\sqrt{K}}=\frac{1}{\sqrt{1.77}}=75.2 \%
\end{aligned}
$$

