Electromagnetic waves

Maxwell equations:

$$
\begin{align*}
& \nabla \times \vec{B}=\mu \vec{j}+\mu \varepsilon \frac{\partial \vec{E}}{\partial t} \tag{1}\\
& \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \tag{2}\\
& \nabla \cdot \vec{E}=\frac{\rho}{\varepsilon} \tag{3}\\
& \nabla \cdot \vec{B}=0 \tag{4}
\end{align*}
$$

By applying derivative $\partial / \partial t$ to Eq. (1) and $\vec{\nabla} \times$ to Eq. (2) we obtain:

$$
\begin{equation*}
\nabla \times \nabla \times \vec{E}=-\mu \frac{\overrightarrow{\partial j}}{\partial t}-\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}} \tag{5}
\end{equation*}
$$

Vector algebra:

$$
\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})
$$

Similarly

$$
\begin{equation*}
\vec{\nabla} \times(\vec{\nabla} \times \vec{E})=\vec{\nabla}(\vec{\nabla} \cdot \vec{E})-\nabla^{2} \vec{E} \tag{6}
\end{equation*}
$$

By using (6) and (3) Eq. (5) can be written in the form:

$$
\begin{equation*}
\nabla^{2} \vec{E}-\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=\mu \frac{\vec{g}}{\partial t}+\frac{1}{\varepsilon} \nabla \rho \tag{7}
\end{equation*}
$$

The first term in 1.-h. side of (7) contains the vector Laplace operator.
In rectangular (cortesian) coordinates it is given by

$$
\begin{aligned}
& \nabla^{2} \vec{E}=\left(\frac{\partial^{2} E_{x}}{\partial x^{2}}+\frac{\partial^{2} E_{x}}{\partial y^{2}}+\frac{\partial^{2} E_{x}}{\partial z^{2}}\right) \vec{i}+\left(\frac{\partial^{2} E_{y}}{\partial x^{2}}+\frac{\partial^{2} E_{y}}{\partial y^{2}}+\frac{\partial^{2} E_{y}}{\partial z^{2}}\right) \vec{j} \\
& +\left(\frac{\partial^{2} E_{z}}{\partial x^{2}}+\frac{\partial^{2} E_{z}}{\partial y^{2}}+\frac{\partial^{2} E_{z}}{\partial z^{2}}\right) \vec{k}=\vec{i} \nabla^{2} E_{x}+\vec{j} \nabla^{2} E_{y}+\vec{k} \nabla^{2} E_{z}
\end{aligned}
$$

Outside of the region with sources Eq. (7) is reduced to the wave equation
$\nabla^{2} \vec{E}-\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0$
For 1-d case $\left(\vec{E}=\left[0, E_{y}(x), 0\right]\right)$ in vacuum (8) is reduced to
$\frac{\partial^{2} E_{y}}{\partial x^{2}}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{y}}{\partial t^{2}}=0$
Let us assume that the solution of Eq. (9) has the form

$$
\begin{equation*}
E_{y}(x, t)=f(x-U t) \tag{10}
\end{equation*}
$$

The factor v is a constant. The function f can be any function of a single variable. The purpose of writing $E_{y}(x, t)$ as we have in (10) is to make the waveform move as a unit in the positive- x direction as time passes. We know that if $f(x)$ is any function of x, then $f\left(x-x_{0}\right)$ is the same function, shifted to the right a distance x_{0} along the x axis. If instead of $f\left(x-x_{0}\right)$ we write $f(x-U t)$, then the function is shifted to the right a distance $U t$. This distance increases as time increases, so the function is displaced steadily further out the x axis. The displacement is by a distance $U t$, which means that the velocity of motion is U. It is easy to see that the entire waveform travels as a unit with velocity U.

To show that waves can propagate in vacuum, we need to verify that the wave (10) satisfies the wave equation (9). Differentiating (10), we see that $\partial^{2} E_{y} / \partial x^{2}=f^{\prime \prime}(x-U t)$, where $f^{\prime \prime}$ is the second derivative of f with respect to its argument. Similarly $\partial^{2} E_{y} / \partial t^{2}=U^{2} f^{\prime \prime}(x-U t)$. Substituting into (9) we see that the wave equation is satisfied, provided that
$U^{2}=\frac{1}{\varepsilon_{0} \mu_{0}}$
A sinusoidal solution of equation (9) describing a traveling wave moving in the positive- x direction can be written as
$E_{y}(x, t)=E_{0} \cos [k(x-U t)]$
The constant k is the wave number. We see that at a fixed position, E_{y} varies sinusoidally in time with an angular frequency
$\omega=k U$.

In terms of k and ω

$$
\begin{equation*}
E_{y}(x, t)=E_{0} \cos (k x-\omega t) \tag{14}
\end{equation*}
$$

By differentiating any phase of sinusoid in (14) with respect to time, it is easy to see that the velocity U is the velocity of motion of constant phase. We will use below the symbol $v_{p h}$ instead of U for the wave phase velocity.

Thus, solution (14) describes an electromagnetic wave propagating with phase velocity
$v_{p h}=\omega / k=1 / \sqrt{\varepsilon_{0} \mu_{0}} \equiv c$ - the speed of light.
Similarly solution of (9) in the form
$E_{y}(x, t)=f_{1}(x+U t)$
and
$E_{y}(x, t)=E_{0} \cos (k x+\omega t)$
describe the wave traveling in the negative- x direction.
The wave equation in a medium that is characterized by ε and μ in 1-d case has a form
$\frac{\partial^{2} E_{y}}{\partial t^{2}}-\mu \varepsilon \frac{\partial^{2} E_{y}}{\partial t^{2}}=0$
Sinusoidal solution in this case describes an electromagnetic wave propagating with phase velocity
$v_{p h}=\omega / k=1 / \sqrt{\varepsilon \mu}=c / \sqrt{K_{E} K_{M}}<c$

Now consider the wave propagation in 3-d case that is described by Eq. (8).
In our study of sinusoidal EM waves in this case we will use a more general approach by using the phasor techniques.

PHASORS

Phasor is a complex number that represents a sinusoidal function of time.
Let us consider a sinusoidal function of time
$B(t)=A_{0} \cos (\varphi+\omega t)$
It can be represented in the following form
$B(t)=A_{0} \cos (\varphi+\omega t)=\operatorname{Re}\left\{A_{0} e^{i \varphi} e^{i \omega t}\right\}=\operatorname{Re}\left\{\underline{B} e^{i \omega t}\right\}$
The complex quantity $\underline{B}=A_{0} e^{i \varphi}$ is the phasor of the sinusoidal function $\mathrm{B}(\mathrm{t})$.
Phasors contain information about amplitude and phase of the sinusoids.
RULE 1: If a sinusoid is described by formula $E=A \cos (k x+\omega t) \quad$ the phasor representing the sinusoid is $\underline{E}=A e^{i k x}$

Example: $B(t)=A \sin (k x+\omega t)$. Find \underline{B}.

$$
B(t)=A \sin (k x+\omega t)=A \cos (k x+\omega t-\pi / 2) \Rightarrow \underline{B}=e^{i k x-i \pi / 2}
$$

RULE 2: To obtain the sinusoid corresponding to a given phasor, multiply the phasor by $e^{i \omega t}$

Example: $\underline{E}=5 e^{i 30^{\circ}}$. Find $\mathrm{E}(\mathrm{t})$.
$\left.E(t)=\underline{\operatorname{Re}\left\{E e^{i \omega t}\right\}=5 \cos \left(30^{\circ}\right.}+\omega t\right)$
RULE 3: If \underline{E} is the phasor of the sinusoid $E(t)$, then the phasor representing the sinusoid $\partial E(t) / \partial t$ isi $\omega \underline{E}$.

To prove rule 3 let us consider a sinusoidal function $B(t)=A_{0} \cos (\varphi+\omega t)$ that is represented by a phasor $\underline{B}=A_{0} e^{i \varphi}$. Let us find the phasor of the $\partial B(t) / \partial t$.
$\partial B(t) / \partial t=-\omega A_{0} \sin (\varphi+\omega t)=-\omega A_{0} \cos (\varphi+\omega t-\pi / 2)$
According to Rule 1 , the phasor of this sinusoidal function can be written as
$\underline{\partial B(t) / \partial t}=-\omega A_{0} \exp [i(\varphi-\pi / 2)]=i \omega A_{0} e^{i \varphi}$
Phasor analysis is used for study of sinusoidal signals in linear approximation when all terms in equations have the same frequency.

It is possible to express any wave as a superposition of harmonics with different frequencies.

Then for each harmonic the wave equation
$\nabla^{2} \vec{E}-\varepsilon \mu \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0$
Can be written in the form of equation for the phasor
$\nabla^{2} \vec{E}+\omega^{2} \varepsilon \mu \vec{E}=0-$ Helmholtz equation
We omitted here the underline symbol in the phasor $\underline{\vec{E}}$ that represents the sinusoidal function of time $\vec{E}(\vec{r}, t)$,

Solution for every component of the phasor \vec{E} can be obtained by using the procedure of separation of variables.

In rectangular (Cartesian) coordinates

$$
\begin{equation*}
E_{i}(x, y, z)=X_{i}(x) Y_{i}(y) Z_{i}(z) \quad(i=x, y, z) \tag{19}
\end{equation*}
$$

and from Helmholtz equation (18) we obtain

$$
\begin{equation*}
\frac{\partial^{2} X_{i}}{\partial x^{2}} \frac{1}{X_{i}(x)}+\frac{\partial^{2} Y_{i}}{\partial y^{2}} \frac{1}{Y_{i}(y)}+\frac{\partial^{2} Z_{i}}{\partial z^{2}} \frac{1}{Z_{i}(z)}+\omega^{2} \varepsilon \mu=0 \tag{20}
\end{equation*}
$$

It follows from Eq. (20) that each of the first three terms must be constant.

$$
\begin{align*}
& \frac{\partial^{2} X_{i}}{\partial x^{2}} \frac{1}{X_{i}(x)}=-k_{x}^{2} ; \quad\left(k_{x}^{2}=\text { const }>0\right) \\
& \frac{\partial^{2} Y_{i}}{\partial y^{2}} \frac{1}{Y_{i}(y)}=-k_{y}^{2} ; \quad\left(k_{y}^{2}=\text { const }>0\right) \tag{21}\\
& \frac{\partial^{2} Z_{i}}{\partial z^{2}} \frac{1}{Z_{i}(z)}=-k_{z}^{2} ; \quad\left(k_{z}^{2}=\text { const }>0\right)
\end{align*}
$$

where according to (20) $k_{x}^{2}, k_{y}^{2}, k_{z}^{2}$ satisfy the so-called dispersion equation
$k^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\omega^{2} \varepsilon \mu$
Solution of the first equation in (21) can be written in the form
$X_{i}(x)=A_{i} e^{-i k x}+B_{i} e^{i k x}$
If only first term is retained in phasor (), the sinusoidal in time domain solution for the field will have a form

$$
\begin{equation*}
X_{i}(x, t)=\operatorname{Re}\left\{A_{i} e^{-i(k x-\omega t)}\right\}=A_{i} \cos (k x-\omega t) \tag{24}
\end{equation*}
$$

It corresponds to the wave traveling in positive x -direction.
Second term in (23) corresponds to the wave propagating in -x direction. Such a component appears usually due to reflection from some boundary. As a result, (23) describes a standing wave solution that is formed in this case. For example in the simplest case when $A_{i}=B_{i}$, the phasor (23) is equal
$X_{i}(x)=2 A_{i} \cos k_{x} x$
and the sinusoidal in time domain solution of the first of Equations (21) is just a standing wave

$$
\begin{equation*}
X_{i}(x, t)=2 A_{i} \cos \left(k_{x} x\right) \cos (\omega t) \tag{26}
\end{equation*}
$$

Solution for a traveling wave can be written in the form

$$
\begin{align*}
& E_{i}(t, x, y, z)=\operatorname{Re}\left\{X_{i}(x) Y_{i}(y) Z_{i}(z) e^{i \omega t}\right\}=E_{i} \operatorname{Re}\left\{-i\left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)\right\} \tag{27}\\
& =E_{i} \cos (\vec{k} \vec{r}-\omega t)
\end{align*}
$$

Here $\vec{k}=\left\langle k_{x}, k_{y}, k_{z}\right\rangle$ is the wave vector, its direction defines the direction of the wave propagation, plane perpendicular to \vec{k} is the plane of constant phase.

It follows from the dispersion relation (22) that the phase velocity of EM wave in a medium is $v_{p h}=\omega / k=c / \sqrt{\varepsilon \mu}$
that is smaller than light speed in vacuum.

