4-1 F corresponds to the charge passed to deposit one mole of monovalent element at a cathode. As one mole contains Avogadro's number of atoms,
$e=\frac{96500 \mathrm{C}}{6.02 \times 10^{23}}=1.60 \times 10^{-19} \mathrm{C}$.
4-2 (a) Total charge passed $=i^{*} t=(1.00 \mathrm{~A})(3600 \mathrm{~s})=3600 \mathrm{C}$. This is

$$
\frac{3600 \mathrm{C}}{1.60 \times 10^{-19} \mathrm{C}}=2.25 \times 10^{22} \text { electrons. }
$$

As the valence of the copper ion is two, two electrons are required to deposit each ion as a neutral atom on the cathode.

$$
\text { The number of } \mathrm{Cu} \text { atoms }=\frac{\text { number of electrons }}{2}=1.125 \times 10^{22} \mathrm{Cu} \text { atoms. }
$$

(b) So the weight (mass) of a Cu atom is: $\frac{1.185 \mathrm{~g}}{1.125 \times 10^{22} \text { atoms }}=1.05 \times 10^{-22} \mathrm{~g}$.
(c) $\quad m=q \frac{\text { molar weight }}{96500}(2)$ or

$$
\text { molar weight }=m(96500) \frac{2}{q}=(1.185 \mathrm{~g})(96500 \mathrm{C}) \frac{2}{3600 \mathrm{C}}=63.53 \mathrm{~g} .
$$

4-3 Thomson's device will work for positive and negative particles, so we may apply $\frac{q}{m} \approx \frac{V \theta}{B^{2} l d}$.
(a) $\frac{q}{m} \approx \frac{V \theta}{B^{2} l d}=(2000 \mathrm{~V}) \frac{0.20 \text { radians }}{\left(4.57 \times 10^{-2} \mathrm{~T}\right)^{2}}(0.10 \mathrm{~m})(0.02 \mathrm{~m})=9.58 \times 10^{7} \mathrm{C} / \mathrm{kg}$
(b) As the particle is attracted by the negative plate, it carries a positive charge and is a proton. $\left(\frac{q}{m_{p}}=\frac{1.60 \times 10^{-19} \mathrm{C}}{1.67 \times 10^{-27} \mathrm{~kg}}=9.58 \times 10^{7} \mathrm{C} / \mathrm{kg}\right)$
(c) $\quad v_{x}=\frac{E}{B}=\frac{V}{\mathrm{~d} B}=\frac{2000 \mathrm{~V}}{0.02 \mathrm{~m}}\left(4.57 \times 10^{-2} \mathrm{~T}\right)=2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(d) As $v_{x} \sim 0.01 \mathrm{c}$ there is no need for relativistic mechanics.

4-8 (a) From Equation 4.16 we have $\Delta n \infty\left(\frac{\sin \phi}{2}\right)^{-4}$ or $\Delta n_{2}=\Delta n_{1} \frac{\left(\frac{\sin \phi_{1}}{2}\right)^{4}}{\left(\frac{\sin \phi_{2}}{2}\right)^{4}}$. Thus the number of α^{\prime} s scattered at 40 degrees is given by

$$
\Delta n_{2}=(100 \mathrm{cpm}) \frac{\left(\sin \frac{20}{2}\right)^{4}}{\left(\sin \frac{40}{2}\right)^{4}}=(100 \mathrm{cpm})\left(\frac{\sin 10}{\sin 20}\right)^{4}=6.64 \mathrm{cpm} .
$$

Similarly

$$
\begin{aligned}
\Delta n \text { at } 60 \text { degrees } & =1.45 \mathrm{cpm} \\
\Delta n \text { at } 80 \text { degrees } & =0.533 \mathrm{cpm} \\
\Delta n \text { at } 100 \text { degrees } & =0.264 \mathrm{cpm}
\end{aligned}
$$

(b) From 4.16 doubling $\left(\frac{1}{2}\right) m_{\alpha} v_{\alpha}^{2}$ reduces Δn by a factor of 4 . Thus Δn at 20 degrees $=\left(\frac{1}{4}\right)(100 \mathrm{cpm})=25 \mathrm{cpm}$.
(c) From 4.16 we find $\frac{\Delta n_{\mathrm{Cu}}}{\Delta n_{\mathrm{Au}}}=\frac{Z_{\mathrm{Cu}}^{2} N_{\mathrm{Cu}}}{Z_{\mathrm{Au}}^{2} N_{\mathrm{Au}}}, \mathrm{Z}_{\mathrm{Cu}}=29, \mathrm{Z}_{\mathrm{Au}}=79$.

$$
\begin{aligned}
\begin{aligned}
N_{\mathrm{Cu}} & =\text { number of } \mathrm{Cu} \text { nuclei per unit area } \\
& =\text { number of } \mathrm{Cu} \text { nuclei per unit volume * foil thickness } \\
& =\left[\left(8.9 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(\frac{6.02 \times 10^{23} \text { nuclei }}{63.54 \mathrm{~g}}\right)\right] t=8.43 \times 10^{22} t \\
N_{\mathrm{Au}} & =\left[\left(19.3 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(\frac{6.02 \times 10^{23} \text { nuclei }}{197.0 \mathrm{~g}}\right)\right] t=5.90 \times 10^{22} t
\end{aligned} \\
\text { So } \Delta n_{\mathrm{Cu}}=\Delta n_{\mathrm{Au}}(29)^{2} \frac{8.43 \times 10^{22}}{(79)^{2}}\left(5.90 \times 10^{2}\right)=(100)\left(\frac{29}{79}\right)^{2}\left(\frac{8.43}{5.90}\right)=19.3 \mathrm{cpm}
\end{aligned}
$$

4-9 The initial energy of the system of α plus copper nucleus is 13.9 MeV and is just the kinetic energy of the α when the α is far from the nucleus. The final energy of the system may be evaluated at the point of closest approach when the kinetic energy is zero and the potential energy is $k(2 e) \frac{Z e}{r}$ where r is approximately equal to the nuclear radius of copper. Invoking conservation of energy $E_{i}=E_{f}, K_{\alpha}=(k) \frac{2 Z e^{2}}{r}$ or

$$
r=(k) \frac{2 Z e^{2}}{K_{\alpha}}=\frac{(2)(29)\left(1.60 \times 10^{-19}\right)^{2}\left(8.99 \times 10^{9}\right)}{\left(13.9 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=6.00 \times 10^{-15} \mathrm{~m}
$$

