
 

8-24 
    
P1s r   4

a0
3 r 2e2r a0  for hydrogen ground state, 

  
U r    ke2

r
 is potential energy (    Z  1) 

 

    

U  U r P1 s r dr
0



  4ke2

a0
3

re2r a0 dr
0





 
4ke2

a0
3

a0

2







2

ze z dz
0



 where z 
2r

a0


ke2

a0

 2 13.6 eV   27.2 eV.

 

 

 To find   K , we note that 
    
K  U  E  

ke2

2a0
 13.6 eV  so, 

  
K 

ke2

a0
 13.6 eV . 

 
8-25 The most probable distance is the value of r which maximizes the radial probability density 

    P r   rR r 2
. Since   P r  is largest where  rR r  reaches its maximum, we look for the most 

probable distance by setting 
 

d rR r  
dr

 equal to zero, using the functions   R r  from Table 8.4. 

For clarity, we measure distances in bohrs, so that 
  

r

a0
 becomes simply r, etc. Then for the 2s 

state of hydrogen, the condition for a maximum is  
 

    
0 

d

dr
2r  r 2 er 2  2 2r 

1

2
2r  r2 







er 2  

 
 or     0  4  6r  r 2 . There are two solutions, which may be found by completing the square to 

get     0  r  3 2  5  or     r  3  5 bohrs . Of these   r  3  5  5.236a0  gives the largest value of 

  P r , and so is the most probable distance. For the 2p state of hydrogen, a similar analysis 

gives 
    
0 

d

dr
r 2er 2  2r 

1

2
r 2







er 2  with the obvious roots   r  0  (a minimum) and   r  4  (a 

maximum). Thus, the most probable distance for the 2p state is   r  4a0 , in agreement with the 
simple Bohr model. 

 
8-26 The probabilities are found by integrating the radial probability density for each state, P(r), 

from     r  0  to     r  4a0 . For the 2s state we find from Table 8.4 (with   Z  1  for hydrogen) 

    
P2 s r   rR2s r 2

 8a0 1 r

a0







2

2 
r

a0







2

er a 0  and 
  
P  8a0 1 r

a0







2

2 
r

a0







2

er a0 dr
0

4a 0

 . 

Changing variables from r to 
  
z 

r

a0
 gives 

  
P  81 4z 2 4z 3  z 4 ez dz

0

4

 . Repeated 

integration by parts gives 
 

 

    

P  81  4z 2 4z3  z 4  8z 12z 2 4z3  8 24z  12z2  24  24z  24  ez

0

4

 81  64  96 104 72  24 e4 8  0.176
 

 



 For the 2p state of hydrogen 
    
P2 p r   rR2p r 

2
 24a0 1 r

a0







4

er a0  and 

    
P  24a0 1 r

a0







4

er a0 dr
0

4a 0

  241 z 4ez dz
0

4

 . Again integrating by parts, we get 

    
P  241 z 4 4z 3 12z 2  24z  24 ez

0

4
 241 824e4  24  0.371 . The probability for the 

2s electron is much smaller, suggesting that this electron spends more of its time in the outer 
regions of the atom. This is in accord with classical physics, where the electron in a lower 
angular momentum state is described by orbits more elliptic in shape. 

 

8-29 To find   r  we first compute 
    
r2  using the radial probability density for the 1s state of 

hydrogen: 
    
P1s r   4

a0
3 r 2e2r a0 . Then 

  
r2  r 2P1s r dr

0



 
4

a0
3 r 4e2r a0 dr

0



 . With 
    
z 

2r

a0
, this is 

    
r2 

4

a0
3

a0

2







5

z 4ez dz
0



 . The integral on the right is (see Example 8.9) 
  

z 4ez dz
0



 4! so that 

    
r2 

4

a0
3

a0

2







5

4!  3a0
2  and 

    
r  r2  r

2 1 2
 3a0

2  1.5a0 2 1 2

0.866a0 . Since   r  is an 

appreciable fraction of the average distance, the whereabouts of the electron are largely 
unknown in this case. 

 

8-30 The averages   r  and 
    
r2  are found by weighting the probability density for this state 

    
P1s r   4

Z

a0
3







r 2e2Zr a0  with r and   r

2 , respectively, in the integral from   r  0  to   r   : 

 

    

r  rP1s r dr
0



 4
Z

a0
3









 r3e2Zr a0 dr

0





r2  r 2P1s r dr
0



  4
Z

a0
3







r 4e2rZ a0 dr

0




 

 

 Substituting 
    
z 

2Zr

a0
 gives 

 

    

r  4
Z

a0








3
a0

2Z







4

z3e z dz
0



 
3!

4

a0

Z








3

2

a0

Z







r2  4
Z

a0








3
a0

2Z







5

z 4ez dz
0



 
4!

8

a0

Z







2

 3
a0

Z







2
 

 

 and 
    
r  r2  r

2 1 2


a0

Z
3 

9

4






1 2

0.866
a0

Z





. The momentum uncertainty is deduced 

from the average potential energy 
 

    
U  kZe2 1

r
P1 s r dr

0



  4kZe 2 Z

a0







3

re2Zr a0

0



  4kZe 2 Z

a0







3
a0

2Z







2

 
k Ze 2

a0
. 



 

 Then, since 
    
E  

k Ze 2

2a0
 for the 1s level, and 

  
a0 

2

meke2 , we obtain  

 

    
p2 2me K 2me E  U  2mek Ze 2

2a0


Z

a0







2

. 

 

 With     p 0  from symmetry, we get 
  
p  p2 1 2


Z

a0
 and   rp  0.866  for any Z, 

consistent with the uncertainty principle. 
9-1     E  2BB  hf  

 
    
2 9.27  1024  J T 0.35 T   6.63  1034  Js f  so   f  9.79 109  Hz  

 

9-4 (a) 3d subshell      l  2  ml  2, 1, 0, 1, 2  and 
  
ms  

1

2
 for each   ml  

 

n 
l  ml   ms  

3 2 –2 –1/2 
3 2 –2 +1/2 
3 2 –1 –1/2 
3 2 –1 +1/2 
3 2 0 –1/2 
3 2 0 +1/2 
3 2 1 –1/2 
3 2 1 +1/2 
3 2 2 –1/2 
3 2 2 +1/2 

 
(b) 3p subshell: for a p state,   l 1 . Thus  ml  can take on values  l  to l, or –1, 0, 1. For each 

  ml ,   ms  can be 
  


1

2
. 

 

n 
l  ml   ms  

3 1 –1 –1/2 
3 1 –1 +1/2 
3 1 0 –1/2 
3 1 0 +1/2 
3 1 1 –1/2 
3 1 1 +1/2 

 
9-6 The exiting beams differ in the spin orientation of the outermost atomic electron. The energy 

difference derives from the magnetic energy of this spin in the applied field B: 
 

      
U   s B  g

e

2m





SzB  gBBms . 

 



 With     g 2  for electrons, the energy difference between the up spin 
  
ms 

1

2





 and down spin 

ms  
1

2





 orientations is  

 

    
U  gBB  2  9.273  1024  J T 0.5 T   9.273 1024  J  5.80  105  eV . 

9-17 From Equation 8.9 we have 
    
E 

2 2

2mL2







n1

2  n2
2  n3

2  
 

 

    

E 
1.054 1034 2  2 n1

2  n2
2  n3

2 
2 9.11  1031 2  1010 2

 1.5 1018  J n1
2  n2

2  n3
2  9.4 eV  n1

2  n2
2  n3

2  

 
(a) 2 electrons per state. The lowest states have  
 

    
n1

2  n2
2  n3

2  1, 1, 1  E111  9.4 eV  12  12 12  eV  28.2 eV . 

 
 For 

    
n1

2  n2
2  n3

2  1, 1, 2  or  1, 2, 1  or (2, 1, 1), 

 

    

E112  E121 E211  9.4 eV  12 12  22  56.4 eV

Emin  2  E111 E112 E121 E211  2 28.2  3  56.4   398.4 eV
 

 
(b) All 8 particles go into the 

  
n1

2  n2
2  n3

2  1, 1, 1  state, so  

 

  Emin  8  E111 225.6 eV . 

9-21 (a)     1s2 2s2 2p4  
 

(b) For the two 1s electrons,   n 1 ,   l  0 ,   ml 0 , 
  
ms  

1

2
. 

 For the two 2s electrons,   n  2 ,   l  0 ,   ml 0 , 
  
ms  

1

2
. 

 For the four 2p electrons,   n  2 ,   l 1 ,   ml  1,  0 ,  1 , 
  
ms  

1

2
. 



9-24 

Na

Ato
m

3s 3p 4s
Electr on

Co nfig urat ion

[Ne]3s1

Mg [Ne]3s2

Al [Ne]3s23p1

Si [Ne]3s23p2

P [Ne]3s23p3

S [Ne]3s23p4

Cl [Ne]3s23p5

Ar [Ne]3s23p6

K [Ar]4s1

 
 
 The 3s subshell is energetically lower and so fills before the 3p. According to Hund’s rule, 

electrons prefer to align their spins so long as the exclusion principle can be satisfied. 
 


