Physics 2BL Homework Set 03
Taylor Problems: 5.2, 5.6, 5.20, 5.36
5.2:

5.6:
(A) $\mathrm{f}(\mathrm{t})=\frac{1}{\tau} \mathrm{e}^{-\mathrm{t} / \tau}$

(B) Eqn. 5.13 states: $\int_{-\infty}^{\infty} f(t) d t=1$

We are told $f(t)=0$ for $t<0$ in our case, so

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(t) d t=\int_{0}^{\infty} f(t) d t=\int_{0}^{\infty}(1 / \tau) \operatorname{Exp}(-t / \tau) d t \quad \text { Let } \mathrm{u}=-\mathrm{t} / \tau, \mathrm{du}=-(1 / \tau) \mathrm{dt} \rightarrow \mathrm{dt}=-\tau \mathrm{du} \\
& \int_{-\infty}^{\infty} f(t) d t=\int_{0}^{-\infty}(-\tau / \tau) e^{u} d u=-\int_{0}^{-\infty} e^{u} d u=e^{0}-e^{-\infty}=1-0=1, \text { as expected }
\end{aligned}
$$

(C) Eqn. 5.15 states: $\bar{t}=\int_{-\infty}^{\infty} t f(t) d t$

Since $\mathrm{f}(\mathrm{t})=0$ for $\mathrm{t}<0$, we have $\int_{-\infty}^{\infty} t f(t) d t=\int_{0}^{\infty} t f(t) d t$

$$
\begin{aligned}
\int_{-\infty}^{\infty} t f(t) d t & =\int_{0}^{\infty}(t / \tau) \operatorname{Exp}(-t / \tau) d t \quad \text { Let } \mathrm{u}=-\mathrm{t} / \tau, \mathrm{du}=-(1 / \tau) \mathrm{dt} \rightarrow \mathrm{dt}=-\tau \mathrm{du} \\
& =\int_{0}^{-\infty} u e^{u}(-\tau) d u=-\tau \int_{0}^{-\infty} u e^{u} d u=\tau \int_{-\infty}^{0} u e^{u} d u \\
& =\tau\left[\left.u e^{u}\right|_{-\infty} ^{0}-\int_{-\infty}^{0} e^{u} d u\right]=\tau\left[0-0-\left.e^{u}\right|_{-\infty} ^{0}\right]=\tau[1-0]=\tau
\end{aligned}
$$

5.20: Mean height $\bar{h}=69^{\prime \prime}, \sigma=2 "$
(A) How many men between $67 "$ and $71 "=\bar{h} \pm 1 \sigma$
68% should be within the range of $\bar{h} \pm 1 \sigma$.
$\rightarrow \mathrm{N}=1000 \cdot 68 \%=680 \mathrm{men}$
(B) How many men taller than $71 "=\bar{h}+1 \sigma$

If 68% should be within the range of $\bar{h} \pm \sigma, 32 \%$ should be outside that range.
Assuming it is symmetric, 16% should be lower than $\bar{h}-\sigma$ and 16% should be above $\bar{h}+\sigma$.
$\rightarrow \mathrm{N}=1000 \cdot 16 \%=160$ men
(C) How many men taller than $75^{\prime \prime}=\bar{h}+3 \sigma$

For same reasons as above, half of the men outside the range of $\bar{h} \pm 3 \sigma$ $\rightarrow \mathrm{N}=(1 / 2)(1-0.997) \cdot 1000=1.5 \approx 2 \mathrm{men}$
(D) How many men between $65^{\prime \prime}$ and $67^{\prime \prime}=(\bar{h}-2 \sigma)$ and $(\bar{h}-\sigma)$

How many inside $\bar{h}+2 \sigma=(0.9545) 1000=954.5$
How many inside $\bar{h}+\sigma=(0.68) 1000=680$
$(1 / 2)(955-680)=137.5 \approx 138$ men
5.36: $x_{A}=13 \pm 1, x_{B}=15 \pm 1$
(A) $\left|x_{A}-x_{B}\right|=2 \pm \sqrt{1^{2}+1^{2}}=2 \pm 1.4$
(B) $t=\frac{\left|x_{A}-x_{B}\right|}{\sigma}=\frac{2}{1.4}=1.4$
$\operatorname{Prob}($ outside $1.4 \sigma)=1-\operatorname{Prob}($ within $1.4 \sigma)$

$$
=1-0.8385 \approx 0.16
$$

$\operatorname{Prob}($ outside $1.4 \sigma)=16 \%$
Assuming 5\% tolerance, this discrepancy is not significant.

