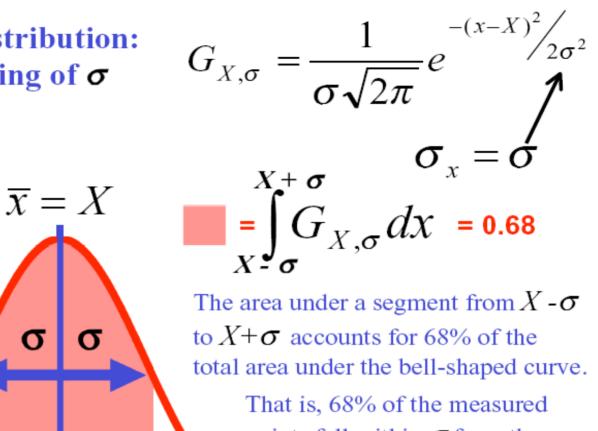
Simple Harmonic Motion and Damping & Uncertainty Analysis Review

Lecture # 5 Physics 2BL Winter 2011

Outline

- Significant figures
- Gaussian distribution and probabilities
- Experiment 3 intro
- Physics of damping and SHM
- Experiment 3 objectives

Significant Figures


What is the correct way to report the following numbers: (Justify your answer)

(a) 653 ± 55.4 m

(b) $256.55 \pm 27 \text{ kg}$

σ

points fall within σ from the best estimate $\overline{x} = X$

120²⁶ 20 60 100 40 80

Prob	Table A. The percentage probability, $Prob(\text{within } t\sigma) = \int_{X-t\sigma}^{X+t\sigma} G_{X,\sigma}(x) dx,$ as a function of t.					Χ-τσ Χ Χ+τσ					
	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17	
0.1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07	
0.2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82	
0.3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35	
0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59	
0.5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48	
0.6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98	
0.7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05	
0.8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65	
0.9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78	
1.0	68.27	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43	
1.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60	
1.2	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29	
1.3	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.55	
1.4	83.85	84.15	84.44	84.73	85.01	85.29	85.57	85.84	86.11	86.38	
1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.82	
1.6	89.04	89.26	89.48	89.69	89.90	90.11	90.31	90.51	90.70	90.90	
1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65	
1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.12	
1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34	
2.0	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.34	
2.1	96.43	96.51	96.60	96.68	96.76	96.84	96.92	97.00	97.07	97.15	
2.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.80	

t = 1

p. 287 Taylor

Compatibility of a measured result(s): t-score

Best estimate of x:

$$x_{best} \pm \sigma_{\overline{X}}$$

Compare with expected answer x_{exp} and compute t-score:

$$t = \frac{\left| x_{best} - x_{exp\,ected} \right|}{\sigma_{x}}$$

- This is the number of standard deviations that x_{best} differs from x_{exp}.
- Therefore, the probability of obtaining an answer that differs from x_{exp} by t or more standard deviations is:

Prob(outside $t\sigma$) = 1-Prob(within $t\sigma$))

Example problem

Measure wavelength λ four times: $503 \pm 10 \text{ nm}$ $491 \pm 8 \text{ nm}$ $525 \pm 20 \text{ nm}$ $570 \pm 40 \text{ nm}$

Should we reject the last data point? $t_{sus} = \Delta \lambda = \frac{|570 - 500| \text{ nm}}{\sqrt{6^2 + 40^2} \text{ nm}} = 1.73 \text{ }\sigma$

Prob of λ outside $\Delta \lambda =$

Pro	b(within to	$r = \begin{bmatrix} A^{+} \\ a^{+} \end{bmatrix}$	"G. ()							
Prob(within $t\sigma$) = $\int_{X-t\sigma}^{X+t\sigma} G_{X,\sigma}(x) dx$, as a function of t .						X-to		X	X+to	
0	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
00	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.1
01	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.0
02	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.8
03	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.3
04	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.5
05	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.4
06	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.9
07	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.0
08	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.6
09	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.7
10	68.27	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.4
11	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.6
12	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.2
13	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.
1.4	83.85	84.15	84.44	84.73	85.01	85.29	85.57	85.84	86.11	86.3
1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.8
16	89 04	89.26	89 48	89.69	89.90	90.11	90.31	90.51	90.70	90.9
1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.6
1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.1
1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.
2.0	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.3
2.1	96.43	96.51	96.60	96.68	96.76	96.84	96.92	97.00	97.07	97.1
2.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.8
22	07 96	07 01	07 07	08 02	08 07	08 12	98 17	98 22	98 27	98 3

Table A. The percentage probability, $P_{rest}(within tr}) = \int_{0}^{X+t\sigma} C_{rest}(w) dw$

Example problem

Measure wavelength λ four times: $503 \pm 10 \text{ nm}$ $491 \pm 8 \text{ nm}$ $525 \pm 20 \text{ nm}$ $570 \pm 40 \text{ nm}$

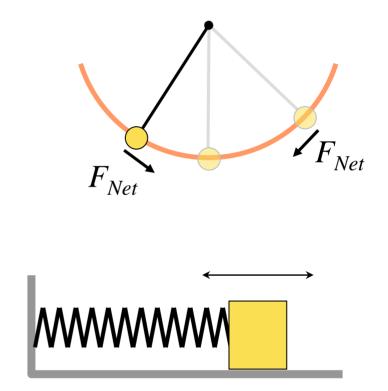
Should we reject the last data point? $t_{sus} = \Delta \lambda = \frac{|570 - 500| \text{ nm}}{\sqrt{6^2 + 40^2} \text{ nm}} = 1.73 \text{ }\sigma$

Prob of λ outside $\Delta \lambda = 100 \% - 91.6 \% = 8.4 \%$

Total Prob = N x Prob = 4 * 8.4 % = 33.6 %

Is Total Prob < 50 % ? Yes, therefore can reject data point

The Four Experiments


- Determine the average density of the earth
- Measure simple things like lengths and times
 Learn to estimate and propagate errors
- Non-Destructive measurements of densities, structure-
- Measure moments of inertia
 Use repeated measurements to reduce random errors
- Test model for damping; Construct and tune a shock absorber
- Damping model based on simple assumption
- Adjust performance of a mechanical system
- Demonstrate critical damping of your shock absorber
- Does model work? Under what conditions? If needed, what more needs to be considered?
- Measure coulomb force and calibrate a voltmeter.
- Reduce systematic errors in a precise measurement.

Experiment 3

- Goals: Test model for damping
- Model of a shock absorber in car
- Procedure: develop and demonstrate critically damped system
- check out setup, take data, do data make sense?
- Write up results Does model work under all conditions, some conditions? Need modification?

Simple Harmonic Motion

- Position oscillates if force is always directed towards equilibrium position (restoring force).
- If restoring force is ~ position, motion is easy to analyze.

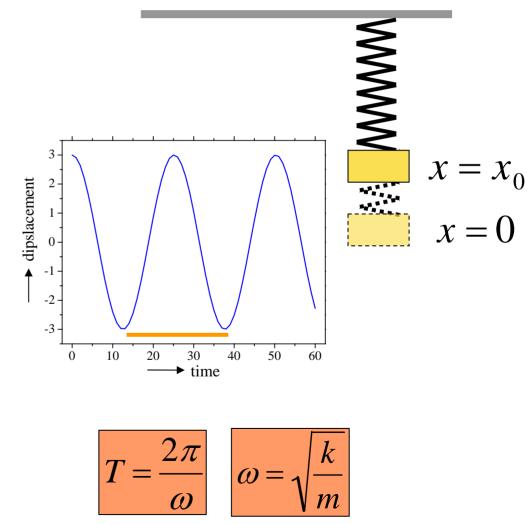
Springs

- Mag. of force from spring ~ extension (compression) of spring
- Mass hanging on spring: forces due to gravity, spring
- Stationary when forces balance

$$F_{S} = -kx$$

$$F_G = -mg$$

$$F_G = F_S$$
$$mg = kx$$


$$m_2 \quad x = x_1$$
$$m_2 \quad x = x_2$$

Simple Harmonic Motion

Spring provides
 linear restoring force
 ⇒ Mass on a spring
 is a harmonic
 oscillator

$$F = -kx$$
$$m\frac{d^2x}{dt^2} = -kx$$

$$x(t) = x_0 \cos \omega t$$

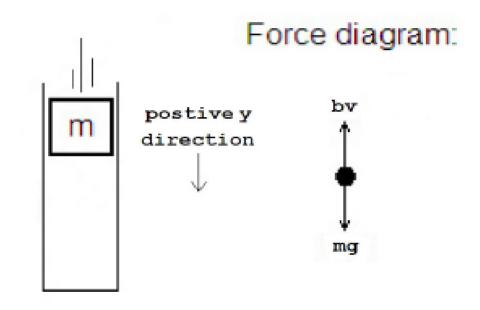
Damping

- Damping force opposes motion, magnitude depends on speed
- For falling object, constant gravitational force
- Damping force increases as velocity increases until damping force equals gravitational force
- Then no net force so no acceleration (constant velocity)

$$\vec{F}_{damping} = -b\vec{v}$$

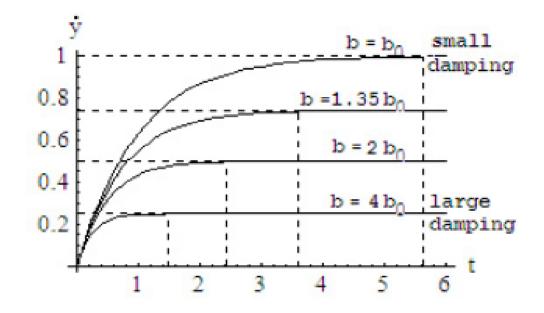
$$F_{gravity} = -mg$$

$$bv = mg$$

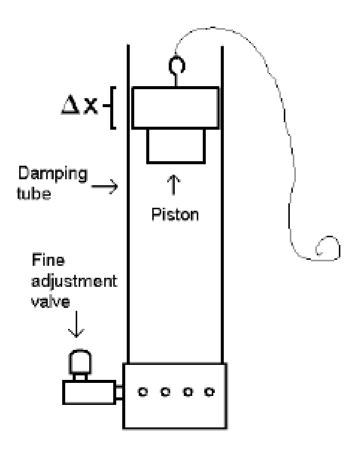

 $v_{terminal} = (mg)/b$

Terminal velocity

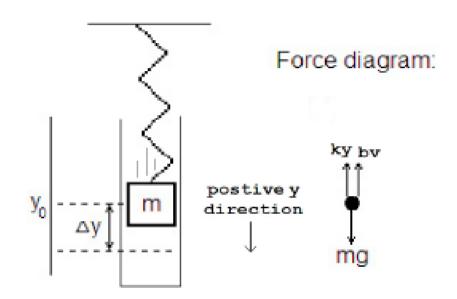
• What is terminal velocity?


• How can it be calculated?

Falling Mass and Drag


At steady state: $F_{drag} = F_{gravity}$ $bv_t = mg$ From rest: $y(t) = v_t[(m/b)(e^{-(b/m)t} - 1) + t]$

Terminal Velocity


For velocity: $\dot{y}(t) = v_t [1 - e^{-(b/m)t}]$

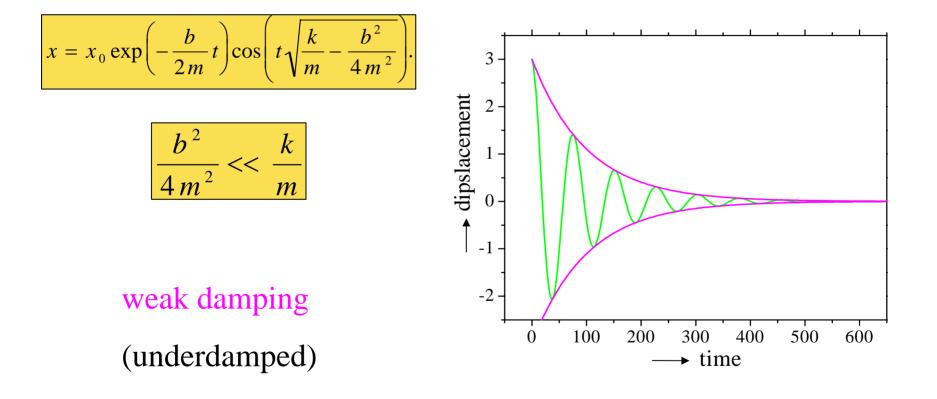
Experimental Setup for Falling Mass and Drag

How do you measure velocity?

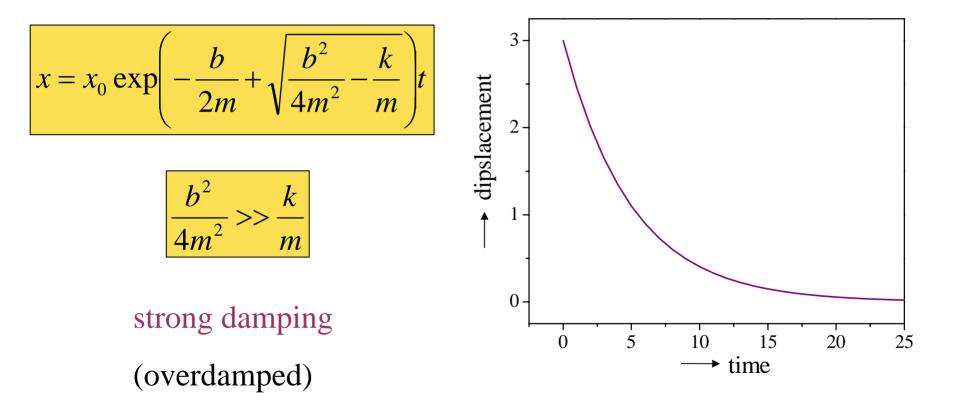
Damped Harmonic Motion

Damped SHM

- Consider both position and velocity dependant forces
- Behavior depends on how much damping occurs during one 'oscillation'

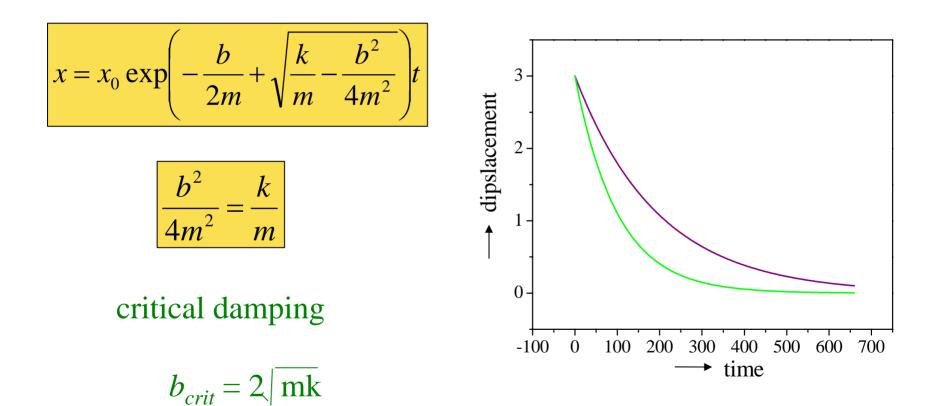

 $x = x_0 \exp\left(-\frac{b}{2m}t\right) \cos\left(t_1\right)$

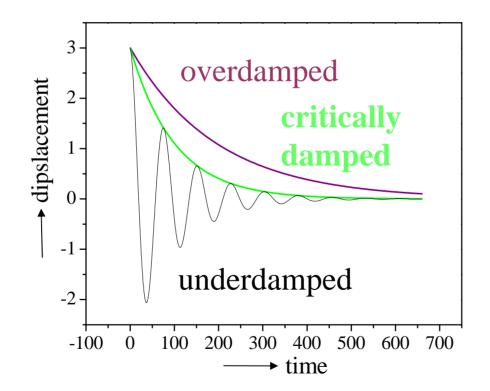
 $\frac{k}{1} - \frac{b^2}{4}$


$$m\frac{d^2x}{dt^2} = -kx - b\frac{dx}{dt}$$

$$x = x_0 \exp\left(-\frac{b}{2m}t\right) \exp\left(it\sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}\right)$$

or
$$x = x_0 \exp\left(-\frac{b}{2m} + \sqrt{\frac{b^2}{4m^2} - \frac{k}{m}}\right)t$$

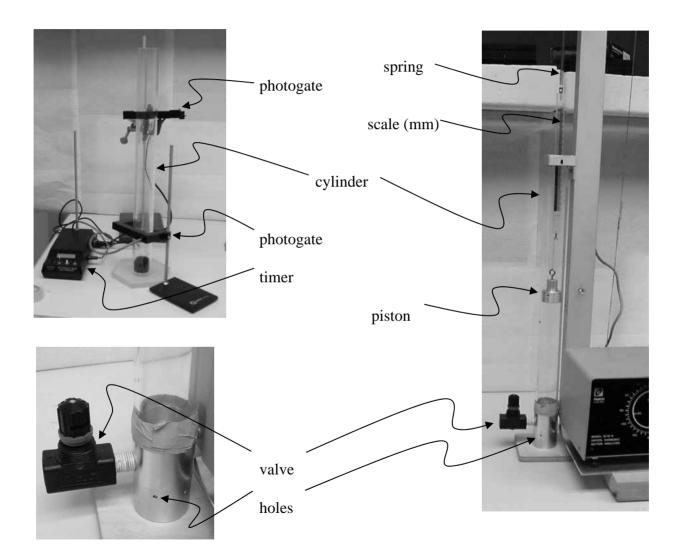

Relative Damping Strength: Weak damping


Relative Damping Strength: Strong damping

Relative Damping Strength: Critical damping

Comparison of the various types of damping

Plotting Graphs


Give each graph a title

Determine independent and dependent variables

Determine boundaries

Include error bars

Experimental setup

Experiment 3: achieve critical damping

- Show/test method
 - Determine spring constant, predict critical damping coefficient
 - Determine how damping coefficient depends on air flow (valve position)
 - easy at terminal velocity
 - how do you know it's *v*_{terminal}?
 - Set damping to critical level

Demonstrate critical damping: show convincing evidence that critical damping was achieved

- Demonstrate that damping is critical
 - No oscillations (overshoot)
 - Shortest time to return to equilibrium position

Error propagation

(1)
$$k_{spring} = 4\pi^2 m/T^2$$

$$\sigma_{kspring} = \varepsilon_{kspring} * k_{spring}$$

$$\varepsilon_{kspring} = \sqrt{\varepsilon_m^2 + (2\varepsilon_T)^2}$$
(2) $k_{by-eye} = m(g\Delta t^*/2\Delta x)^2$

$$\sigma_{by-eye} = \varepsilon_{by-eye} * k_{by-eye}$$

$$\varepsilon_{by-eye} = \sqrt{(2\varepsilon_{\Delta t^*})^2 + (2\varepsilon_{\Delta x})^2 + \varepsilon_m^2}$$

Remember

- Prepare for Exp. 3
- Homework Taylor #8.6, 8.10
- Read Taylor through Chapter 9