Uncertainty, Measurement, and Models

 Overview Exp \#1

 Overview Exp \#1}

Lecture \# 2
Physics 2BL
Winter 2011

Lab TAs

	Tuesday	Wednesday	Thursday
9:00 am	704064	704066	704069
	Mui	Kang	Mui
	Progovac	Progovac	Progovac
12:00 pm	A02	A04	A08
	704065	704067	704070
	Kang	Lopez	Progovac
	Lopez	Kang	Kang
	A03	A05	A09

Heemin Stefan Lilana	Kang Progovac Lopez Matthew	heemin@ucsd.edu Mui
	sprogova@ucsd.edu ilo05@ucsd.edu	
	MYR-Ai@ucsd.edu	

TA Coordinator

Ben Heldt

bheldt@ucsd.edu

Present in labs to assist

Outline

- What uncertainty (error) analysis can for you
- Issues with measurement and observation
- What does a model do?
- General error propagation formula with example
- Overview of Experiment \# 1
- Homework

What is uncertainty (error)?

- Uncertainty (or error) in a measurement is not the same as a mistake
- Uncertainty results from:
- Limits of instruments
- finite spacing of markings on ruler
- Design of measurement
- using stopwatch instead of photogate
- Less-well defined quantities
- composition of materials

Understanding uncertainty is important

- for comparing values
- for distinguishing between models
- for designing to specifications/planning

Measurements are less useful (often useless) without a statement of their uncertainty

An example

Batteries

rated for 1.5 V potential difference across terminals
in reality...

Utility of uncertainty analysis

- Evaluating uncertainty in a measurement
- Propagating errors - ability to extend results through calculations or to other measurements
- Analyzing a distribution of values
- Quantifying relationships between measured values

Evaluating error in measurements

- To measure height of building, drop rock and measure time to fall: $d=\frac{1}{2} g t^{2}$
- Measure times
$2.6 \mathrm{~s}, 2.4 \mathrm{~s}, 2.5 \mathrm{~s}, 2.4 \mathrm{~s}, 2.3 \mathrm{~s}, 2.9 \mathrm{~s}$
- What is the "best" value
- How certain are we of it?

Calculate "best" value of the time

- Calculate average value ($2.6 \mathrm{~s}, 2.4 \mathrm{~s}, 2.5 \mathrm{~s}$, 2.4s, 2.3s, 2.9s)
$-\overline{\mathrm{t}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}} / \mathrm{n}$
$-\quad t=2.51666666666666666666666 \mathrm{~s}$
- Is this reasonable?

Significant figures

Uncertainty in time

- Measured values - (2.6s, 2.4s, 2.5s, 2.4s, 2.3s, 2.9s)
- By inspection can say uncertainty < 0.4 s
- Calculate standard deviation

$$
\begin{aligned}
& \sigma=\sqrt{\sum\left(\mathrm{t}_{\mathrm{i}}-\overline{\mathrm{t}}\right)^{2} /(\mathrm{n}-1)} \\
& \sigma=0.2137288 \mathrm{~s} \\
& \sigma=0.2 \mathrm{~s} \quad \text { (But what does this mean???) }
\end{aligned}
$$

How to quote best value

- What is uncertainty in average value?
- Introduce standard deviation of the mean

$$
\sigma_{\mathrm{t}}^{-}=\sigma / \sqrt{n}=0.08725 \mathrm{~s}=0.09 \mathrm{~s}
$$

- Now what is best quote of average value
$-\overline{\mathrm{t}}=2.51666666666666666666666 \mathrm{~s}$
$-\bar{t}=2.52 \mathrm{~s}$
- Best value is
$-\overline{\mathrm{t}}=2.52 \pm 0.09 \mathrm{~s}$

Propagation of error

- Same experiment, continued...
- From best estimate of time, get best estimate of distance: 31 meters
- Know uncertainty in time, what about uncertainty in distance?
- From error analysis tells us how errors propagate through mathematical functions
(2 meters)

Expected uncertainty in a calculated sum $a=b+c$

- Each value has an uncertainty

$$
\begin{aligned}
\cdot \mathrm{b} & =\mathrm{b} \pm \delta \mathrm{b} \\
\cdot \mathrm{c} & =\overline{\mathrm{c}} \pm \delta \mathrm{c}
\end{aligned}
$$

- Uncertainty for a (δa) is at most the sum of the uncertainties
$\delta \mathrm{a}=\delta \mathrm{b}+\delta \mathrm{c}$
- Better value for δ a is

$$
\delta a=\sqrt{\left(\delta b^{2}+\delta c^{2}\right)}
$$

- Best value is
- $\mathrm{a}=\overline{\mathrm{a}} \pm \delta \mathrm{a}$

Expected uncertainty in a calculated product $\mathrm{a}=\mathrm{b}$ * C

- Each value has an uncertainty

$$
\begin{aligned}
& \text { - } \mathrm{b}=\mathrm{b} \pm \delta \mathrm{b} \\
& \cdot \mathrm{c}=\mathrm{c} \pm \delta \mathrm{c}
\end{aligned}
$$

- Relative uncertainty for a (ε a) is at most the sum of the RELATIVE uncertainties

$$
\varepsilon \mathrm{a}=\delta \mathrm{a} / \mathrm{a}=\varepsilon \mathrm{b}+\varepsilon \mathrm{c}
$$

- Better value for δ a is

$$
\varepsilon a=\sqrt{\left(\varepsilon b^{2}+\varepsilon c^{2}\right)}
$$

- Best value is
- $\mathrm{a}=\mathrm{a} \pm \varepsilon \mathrm{a}$ (fractional uncertainty)

What about powers in a product $a=b * c^{2}$

- Each value has an uncertainty
- b $=\mathrm{b} \pm \delta \mathrm{b}$
- $\mathrm{c}=\mathrm{c} \pm \delta \mathrm{c}$
- $\varepsilon a=\delta a / a \quad$ (relative uncertainty)
- powers become a prefactor (weighting) in the error propagation
- $\varepsilon a^{2}=\left(\varepsilon b^{2}+(2 * \varepsilon c)^{2}\right)$

How does uncertainty in t effect the calculated parameter d?

$$
\begin{aligned}
& -\mathrm{d}=1 / 2 g \mathrm{t}^{2} \\
& \varepsilon \mathrm{~d}=\sqrt{\left(2^{*} \varepsilon t\right)^{2}}=2^{*} \varepsilon
\end{aligned}
$$

$$
\varepsilon d=2^{*}(.09 / 2.52)=0.071
$$

$$
\delta \mathrm{d}=.071 * 31 \mathrm{~m}=2.2 \mathrm{~m}=2 \mathrm{~m}
$$

Statistical error

Relationships

- Know there is a functional relation between d and t $\quad d=1 / 2 g t^{2}$
- d is directly proportional to t^{2}
- Related through a constant $1 / 2 \mathrm{~g}$
- Can measure time of drop (t) at different heights (d)
- plot d versus t to obtain constant

Quantifying relationships

$$
d=1 / 2 g t^{2}
$$

$$
\mathrm{g}=8.3 \pm 0.3 \mathrm{~m} / \mathrm{s}^{2}
$$

$\mathrm{d}=1 / 2 \mathrm{~g}\left(\mathrm{t}^{2}\right)$

$$
\mathrm{g}=8.6 \pm 0.4 \mathrm{~m} / \mathrm{s}^{2}
$$

General Formula for error propagation

For independent, random errors

$$
\delta q=\left|\frac{d q}{d x}\right| \delta x
$$

$$
\delta q=\sqrt{\left(\frac{\partial q}{\partial x} \delta x\right)^{2}+\left(\frac{\partial q}{\partial y} \delta y\right)^{2}}
$$

Measurement and Observation

- Measurement: deciding the amount of a given property by observation
- Empirical
- Not logical deduction
- Not all measurements are created equal...

Reproducibility

- Same results under similar circumstances
- Reliable/precise
- 'Similar' - a slippery thing
- Measure resistance of metal
- need same sample purity for repeatable measurement
- need same people in room?
- same potential difference?
- Measure outcome of treatment on patients
- Can't repeat on same patient
- Patients not the same

Precision and Accuracy

- Precise - reproducible
- Accurate - close to true value
- Example - temperature measurement
- thermometer with
- fine divisions
- or with coarse divisions
- and that reads
- 0 C in ice water
- or 5 C in ice water

Accuracy vs. Precision

Random and Systematic Errors

- Accuracy and precision are related to types of errors
- random (thermometer with coarse scale)
- can be reduced with repeated measurements, careful design
- systematic (calibration error)
- difficult to detect with error analysis
- compare to independent measurement

Observations in Practice

- Does a measurement measure what you think it does? Validity
- Are scope of observations appropriate?
- Incidental circumstances
- Sample selection bias
- Depends on model

Models

- Model is a construction that represents a subject or imitates a system
- Used to predict other behaviors (extrapolation)
- Provides context for measurements and design of experiments
- guide to features of significance during observation

Testing model

- Models must be consistent with data
- Decide between competing models
- elaboration: extend model to region of disagreement
- precision: prefer model that is more precise
- simplicity: Ockham's razor

Experiment 1 Overview: Density of Earth

density $\quad \rho=\frac{M_{E}}{\frac{4}{3} \pi R_{E}^{3}}=\frac{3 g}{4 \pi G R_{E}}=\frac{G M_{E} m}{R_{E}^{2}}=\mathrm{mg}$

$$
R_{E}=\frac{2 h}{\omega^{2}(\Delta t)^{2}}
$$

measure Δt between sunset on cliff and at sea level

Experiment 1: Height of Cliff

rangefinder to get L

Wear comfortable shoes

Sextant to get θ

Make sure you use θ and not $(90-\theta)$

Measure Earth's Radius using Δt Sunset

Now, is this time delay measurable?

$$
t=\frac{L}{2 \pi R_{e}} T=\frac{T}{2 \pi} \sqrt{\frac{2 h}{R_{e}}}
$$

$$
\begin{aligned}
& T=24 \mathrm{hr}=24 \cdot 60 \cdot 60 \mathrm{~s} \\
& =86400 \mathrm{~s} \\
& R_{e}=6,000,000 \mathrm{~m} \\
& h \sim 100 \mathrm{~m}-\text { our cliff } \\
& t=\frac{86400 \mathrm{~s}}{2 \pi} \sqrt{\frac{200}{6 \times 10^{6}}} \approx 80 \mathrm{~s} \\
& \text { Looks doable! }
\end{aligned}
$$

Have we forgotten something?

"The Equation" for Experiment 1a

$$
t=\frac{T}{2 \pi} \sqrt{\frac{2 C h}{R_{e}}}=\frac{1}{\omega} \sqrt{\frac{2 C h}{R_{e}}} \quad \omega=\frac{2 \pi}{24 \mathrm{hr}}
$$

Which are the variables that contribute to the error significantly?

from vrevious page.

$$
\begin{gathered}
\Delta t=t_{1}-t_{2}=\frac{1}{\omega} \sqrt{\frac{2 \bar{C}}{\mathrm{R}_{\mathrm{e}}}}\left(\sqrt{h_{1}}-\sqrt{h_{2}}\right) \\
C \equiv \frac{1}{\cos ^{2}(\lambda) \cos ^{2}\left(\lambda_{s}\right)-\sin ^{2}(\lambda) \sin ^{2}\left(\lambda_{s}\right)}
\end{gathered}
$$

Time difference between the two sunset observers.

The formula for your error analysis.

$$
\begin{aligned}
& \text { What other methods } \\
& \text { could we use to measure } \\
& \text { the radius of the earth? }
\end{aligned}
$$

Season dependant factor slightly greater than 1 .

$$
\mathrm{R}_{\mathrm{e}}=\frac{2 C}{\omega^{2}}\left(\frac{\sqrt{h_{1}}-\sqrt{h_{2}}}{\Delta t}\right)^{2}
$$

Eratosthenes
angular deviation $=$ angle subtended

Experiment 1: Determine g

pendulum

Hxperinnent : Penculunn

- For release angle θ_{i}, you should have a set of time data $\left(t_{1}^{p}, t_{2}^{p}, t_{3}^{p}, \ldots, t_{N}^{P}\right)$.
- Calculate the average, \bar{t}^{p}, and the the standard deviation, $\sigma_{t p}$, of this data.
- Divide \bar{t}^{p} and $\sigma_{t^{p}}$ by p to get average time of a single period, \bar{T} and standard deviation of a single period σ_{T}.
- Calculate $\mathrm{SDOM}, \sigma_{T}=\frac{\sigma_{T}}{\sqrt{N}}$.
- Now you should have $T \pm \sigma_{T}$ for you data at θ_{i}.
- Repeat these calculations for data at each release angle.

Grading rubric uploaded on website

Error Propagation - example

Ws saw earlier how to determine the acceleration of gravity, g.
Using a simple pendulum, measuring its length and period:
-Length 1: $l=l_{\text {best }} \pm \delta l$

- Period T: $\quad T=T_{\text {best }} \pm \delta T$

Determine g by solving:

$$
g=l \cdot(2 \pi / T)^{2}
$$

The question is what is the resulting uncertainty on $\mathrm{g}, \delta \mathrm{g}$??

Example

Given that: $\quad l=10 \pm 0.1 \mathrm{~m}$

$$
\alpha=20 \pm 3^{0}
$$

==> Find h.
$h=l \cdot \cos \alpha=10 \cdot \cos 20^{\circ}=10 \cdot 0.94=9.4 \mathrm{~m}$
$\delta h=\sqrt{\left(\frac{\partial h}{\partial l} \delta l\right)^{2}+\left(\frac{\partial h}{\partial \alpha} \delta \alpha\right)^{2}}$
$\frac{\partial h}{\partial l}=\cos \alpha$
$\frac{\partial h}{\partial \alpha}=l \cdot(-\sin \alpha)$
always use radians when calculating the errors on trig functions

$$
\delta \alpha=3^{0}=\frac{2 \pi \mathrm{rad}}{360^{\circ}} \cdot 3^{0}=0.05 \mathrm{rad}
$$

$\delta h=\sqrt{(\cos \alpha \cdot \delta l)^{2}+(l \cdot(-\sin \alpha) \cdot \delta \alpha)^{2}}=\sqrt{(0.94 \cdot 0.1)^{2}+(10 \cdot[-0.34] \cdot 0.05)^{2}}=0.2 \mathrm{~m}$ $h=9.4 \pm 0.2 \mathrm{~m}$

Propagating Errors for Experiment 1

$\rho=\frac{3}{4 \pi} \frac{g}{G R_{e}} \quad$ Formula for density.
$\sigma_{\rho}=\frac{3}{4 \pi} \frac{1}{G R_{e}} \sigma_{g} \oplus \frac{-3}{4 \pi} \frac{g}{G R_{e}^{2}} \sigma_{R_{e}} \begin{aligned} & \text { Take partial } \\ & \begin{array}{l}\text { derivatives and add } \\ \text { errors in quadrature }\end{array}\end{aligned}$

Or, in terms of relative uncertainties: $\frac{\sigma_{\rho}}{\rho}=\frac{\sigma_{g}}{g} \oplus \frac{\sigma_{R_{e}}}{R_{e}}$
shorthand notation for quadratic sum: $\quad \sqrt{a^{2}+b^{2}}=a \oplus b$

Propagating Errors for R_{e}

$$
\begin{gathered}
\mathrm{R}_{\mathrm{e}}=\frac{2 C}{\omega^{2}}\left(\frac{\sqrt{h_{1}}-\sqrt{h_{2}}}{\Delta t}\right)^{2} \quad \text { basic formula } \\
\sigma_{R_{e}}=\frac{\partial R_{e}}{\partial \Delta t} \sigma_{\Delta t} \oplus \frac{\partial R_{e}}{\partial h_{1}} \sigma_{h_{1}} \oplus \frac{\partial R_{e}}{\partial h_{2}} \sigma_{h_{2}} \quad \begin{array}{l}
\text { Propagate errors (use } \\
\text { shorthand for addition in } \\
\text { quadrature) }
\end{array} \\
\sigma_{R_{e}}=\frac{2 R_{e}}{\Delta t} \sigma_{\Delta t} \oplus \frac{R_{e}}{\sqrt{h_{1}}\left(\sqrt{h_{1}}-\sqrt{h_{2}}\right)} \sigma_{h_{1}} \oplus \frac{R_{e}}{\sqrt{h_{2}}\left(\sqrt{h_{1}}-\sqrt{h_{2}}\right)} \sigma_{h_{2}}
\end{gathered}
$$

Note that the error blows up at $h_{1}=h_{2}$ and at $h_{2}=0$.

Reminder

- Prepare for lab
- Read Taylor chapter 4
- Homework due next week (Jan. 18-20) Taylor 4.6, 4.14, 4.18, 4.26 (separate sheet)
- No lecture next Monday which is Martin Luther King Day
- Next lecture (Jan. 24) on Gaussian Distributions, lab \#2, confidnece in data
- Homework for lab \#2 starting the following week (Jan. 25-27) - read Taylor through Chapter 5 and do problems 5.2, 5.36.

