
Experiment 3, Physics 2BL
Testing a damping model

Last Updated: 2009-05-13

Preparation
Before this experiment, we recommend you review
or familiarize yourself with the following:
– Chapters 7 in Taylor
– Simple Harmonic Motion

1. PHYSICS

For this experiment you will need to be familiar with 3
physical systems and the equations of motion that govern
them. Our method for discussing these systems will be
as follows. First we will set up a force body diagram and
specify initial conditions for the position and velocity.
Then we will determine the equilibrium condition that
occurs when the forces cancel out. When we sum up
the forces and set them equal to mass times acceleration
(Newton’s Second Law) we get a differential equation.
After we write the general solution to this differential
equation, we can solve for the constants using the initial
conditions and plot the resulting motion over time.

1.1. Spring Harmonic Oscillator

The first system is very simple but is a good warm up
problem. We have a mass hanging from a spring as shown
in the figure. The equilibrium position, y0 is determined
when the forces cancel out:

mg = ky0 → y0 =
mg

k

We also set the initial conditions so that the initial
position is given a slight displacement, ∆y, from equi-
librium. This is similar to the small angle displacement
we used for the simple pendulum, but in this case we are
assuming that the spring constant is not going to change

for a small amount of stretching. Also we are releasing
the mass at rest, so the initial velocity is zero. We will
be using the notation that a dot is a derivative in time.

y(t = 0) = y0 + ∆y; ẏ(t = 0) = 0

We set the forces equal to the mass times acceleration.

ΣF = −ky + mg = mÿ

And rearrange to form a differential equation.

ÿ +
k

m
y = g

Substituting ω =
√

k
m , we have the following two

solutions. The solutions to the characteristic equation

r2 + k
m = 0 are r1 = +i

√
k
m and and r2 = −i

√
k
m . The

second solution also works if you plug it in, and it takes
care of the equilibrium condition. According to the rules
of differential equations, the total solution is just the sum
of any possible solutions.

yh(t) = c1 cos ωt + c2 sinωt

yp(t) =
mg

k
= y0

y(t) = yh(t) + yp(t) = c1 cos wt + c2 sinwt + y0

Now we substitute our initial conditions to determine
the constants c1 and c2.

y(0) = c1 + y0 = y0 + ∆y → c1 = ∆y

ẏ(t) = −c1ω sinωt + c2ω cos ωt

ẏ(0) = c2ω = 0 → c2 = 0

Plugging in the constants we have the following solu-
tion for the position, which we have plotted below.

y(t) = ∆y cos ωt + y0
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FIG. 1: Motion of a Spring Harmonic Oscillator

Questions

1. What are the differences between this ideal system
and a spring oscillator in the presence of real life
conditions? Hint: What are we assuming about the
spring? Why would we never see motion exactly like
the plot in FIG. 1?

2. What are the physical units of the spring
constant, k?

3. Say you have two ideal mass on a spring systems.
First, suppose both have the same spring constant k,
but have different masses, m1 < m2. How do the
periods of these two systems compare? Next, suppose
they have different spring constants k1 < k2, but they
both have the same mass m. You raise the mass of
each system to the same height and release them.
How do the amplitudes compare?

1.2. Mass falling in a drag force

The next system describes a mass in free fall with a
drag force from air resistance. In order to vary the drag
force we use a tube that has a variable amount of air
pressure under the mass. The drag force is a function of
the velocity of the falling mass. For mathematical sim-

plicity, we will choose a model in which the force is equal
to a constant b times the velocity v. Note that in gen-
eral damping force may not depend linearly on velocity,
but can have quadratic or other functional dependence
on it. The purpose of this lab is to test the validity of
the assumption that Fdrag = −bv.

Now, there is an equilibrium velocity, analogous to the
equilibrium length associated with a spring. We will call
this the terminal velocity, vt, because during free fall the
mass will speed up to the terminal velocity and then re-
main fixed at that speed.

In order to solve for vt we set the forces equal to each
other.

bvt = mg → vt =
mg

b

We’ll set the initial position and velocity at zero be-
cause we are dropping the mass from rest from the top
of the tube.

y(t = 0) = 0; ẏ(t = 0) = 0

We set the forces equal to the mass times acceleration.

ΣF = −bẏ + mg = mÿ

And rearrange to form a differential equation.

ÿ +
b

m
ẏ = g

The solutions to the characteristic equation r2 + b
mr =

0 are r1 = 0 and r2 = − b
m . The solutions to the differ-

ential equation are thus

yh(t) = c1 + c2e
− b

m t

yp(t) =
mg

b
t = vtt

y(t) = yh(t) + yp(t) = c1 + c2e
− b

m t + vtt

Now we substitute our initial conditions to determine
the constants c1 and c2 and get the following solution for
y(t):

y(t) = vt[
m

b
(e−

b
m t − 1) + t]

This function is not terribly enlightening because it’s
just the equation of a mass falling. What is more inter-
esting is if we take a derivative and look at the velocity:
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ẏ(t) = vt[1− e−
b
m t]

The prefactor mg
b determines the final value that the

velocity will reach. The constant in the exponent, b
m

determines how fast the velocity will reach its final value.
This function is plotted in the figure below. These graphs
are a plot of the velocity function for four different values
of the drag constant, b, while keeping the mass constant.

FIG. 2: Velocity of a mass falling in a drag force for varying
drag constant.

Questions

4. What are the physical units of the drag constant, b?

5. According to the FIG. 2, what happens to the terminal
velocity as the damping is increased? (horizontal lines)
What happens to the time it takes for the velocity to
reach terminal velocity as the damping is increased?
(vertical lines)

1.3. Damped Harmonic Motion

Now we will combine the spring force and the drag
force to show what happens when the harmonic motion
of a spring is damped. We will use the same initial condi-
tions as the first system. Also the equilibrium position,

y0 = mg
k , will be the same because when the mass is

stationary, it feels no drag force.
We set the forces equal to the mass times acceleration.

ΣF = −ky − bẏ + mg = mÿ

And rearrange to form a differential equation.

ÿ +
b

m
ẏ +

k

m
y = g

The solutions to the characteristic equation r2 + b
mr +

k
m = 0 are found using the quadratic formula. This gives

us r = − b
2m ±

√
b2

4m2 − k
m Let’s introduce some variables

to make this notation look nicer. If we define γ = b
2m and

ω0 =
√

k
m then we get r = −γ±

√
γ2 − ω0

2 The damping
coefficient b, the mass m, and the spring constant k are
parameters of the system that we can control. Since we
can give b, m, and k any values we want, in the equation
for r, the value under the square root sign can be positive,
negative, or zero. These three options give us the three
types of solutions to the differential equation. A list of
the three cases and the conditions under which they occur
is given here.

• Overdamped: When γ2 − ω2
0 = b2

4m2 − k
m > 0

• Underdamped: When γ2 − ω2
0 = b2

4m2 − k
m < 0

• Critically damped: When γ2 − ω2
0 = b2

4m2 − k
m = 0

Note: In this experiment, m and k are fixed and we
only adjust the value of b.

Overdamped

This is the condition that the value under the radical,
γ2 − ω2

0 = b2

4m2 − k
m is positive. In this case the solution

to the differential equation is:

y(t) =
∆y

2
e−γt[e−(

√
γ2−ω2

0)t + e+(
√

γ2−ω2
0)t] + y0
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How do we interpret this graph physically? This solu-
tion/graph tells us, for a system that is overdamped, if
we drop the mass from a position ∆y above the equilib-
rium point y0, then it fall toward the equilibrium position
exponentially in time. In other words, it will initially fall
toward y0 quickly, then it will fall more slowly toward y0

as time passes.

Underdamped

This is the condition that the value under the radi-
cal, γ2 − ω2

0 = b2

4m2 − k
m is negative. In order to deal

with this imaginary solution we can factor out a
√
−1.

This switches the values under the radical. As in the
simple harmonic case, imaginary solutions to the charac-
teristic equation give oscillatory solutions to the differen-
tial equation. In this case the solution to the differential
equation is:

y(t) = ∆ye−γt cos[(
√

ω2
0 − γ2)t] + y0

How do we interpret this graph physically? The solu-
tion/graph tells us, for a system that is underdamped,
if we drop a mass from a position ∆y above y0 then the
mass will oscillate about y0 but the amplitude of this
oscillation will decrease exponentially in time. In a non-
ideal case the mass will eventually stop at the equilibrium
point y0.

Critically Damped

This is the condition that the value under the radical,
γ2 − ω2

0 = b2

4m2 − k
m is zero. Solving for b gives us

bcrit = 2
√

mk

In this case the solution to the differential equation is
simply :

y(t) = ∆y(1 + γt)e−γt + y0

How do we interpret this graph physically? The solu-
tion/graph here tell us, for a critically damped system, a

mass dropped from ∆y above y0 will behave much like the
overdamped system. It will initially fall quickly toward
y0 and then fall more slowly toward y0 as time passes.
The difference is that in this critically damped system the
mass will fall to y0 in the shortest time possible without
oscillating about y0.

2. METHODS FOR STATISTICAL
ANALYSIS

2.1. Plotting graphs

Plotting data makes it easy to visualize trends and in
some cases it can end up saving you a lot of work. Here
are some guidelines to keep in mind.

1. Give each graph a title.

2. Decide which variable is the independent variable (val-
ues you have chosen, i.e. height to drop the mass down
the tube) and which is the dependent variable (output of
your experiment or a calculated value from that output).
Always plot the independent variables on the horizontal
axis and the dependent variables on the vertical axis.

3. Figure out what boundaries will be appropriate for
each axis, mark off the divisions, and label each axis with
its units. Each graph should be about half a page in size.

4. Include vertical error bars for the data points.

2.2. Shortcut method for error
propagation

The following method is very useful for saving time in
the error propagation process, however, you should only
use it when it is appropriate. It can only be used when the
function you are propagating errors is simply a function
of variables to given powers.

f(x, y) = Axnym
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Starting with the general formula for error propagation
we use the rule for taking derivatives of powers, in this
case n and m.

σf =

√
(
∂f

∂x
σx)2 + (

∂f

∂y
σy)2

∂f

∂x
= Anxn−1ym;

∂f

∂y
= Amxnym−1

Now we divide both sides by f . Notice that on the right
we have replaced f with its functional form.

σf

f
=

√
(
Anxn−1ym

Axnym
σx)2 + (

Amxnym−1

Axnym
σy)2

This reduces to a very simple formula.

σf

f
=

√
(n

σx

x
)2 + (m

σy

y
)2 (1)

Notice that this works just as well for cases where n
and m are negative numbers. This formula can also be
useful because you can compare fractional errors and in
some cases rule out errors that are negligible. If you are
calculating σf , simply multiply both sides by f .

Questions

6. Find an expression for σk where k = 4π2m
T 2 .

First write out the error propagation the long way, using
partial derivatives. then divide the left hand side by k

and the right hand side by 4π2m
T 2 and reduce

it to get an expression that only has fractional errors
for m and T . You should get the same thing that you
would have gotten using the short cut method.

3. EXPERIMENTAL PROCEDURE

In this experiment you will be testing a model using an
“engineering-approach” in which you will need to answer:
does the data support the model assumed for damping?
The procedure outlined below guides you to compare a
computed quantity (model based) with a data-derived
quantity, and you will need to derive and reason a conclu-
sion based on this comparison. This procedure assumes
damping that is linearly dependent on velocity. After col-
lecting the data, it is up to you to perform a quantitative
analysis that tests the validity of this assumption.

The outline of the procedure is:

• First measure the spring constant, k, of a spring.

• From this compute bcrit, the damping coefficient
required to critically damp a mass m assuming the
damping force is linear in velocity.

• Set up an experiment to measure b for a variety of
damping levels and adjust it to the critical value.

• Check whether critical damping has been achieved
by observing the motion of the spring/mass system
within the damping mechanism.

3.1. Spring Harmonic Oscillator

Step 1 You will need a spring, a piston (with eye-
hook), and a damping tube. Measure the mass m of your
piston. Hang the piston from the spring and measure
the period T of small oscillations. In order to increase
accuracy, measure the time for N (at least 10) oscillations
and divide the total time by N . Calculate k = 4π2m

T 2 and
bcrit = 2

√
mk. Do not overstretch the spring.

3.2. Damped Free Fall

NOTE: Steps 2 and 3 may take a considerable amount
of time. In order to complete the experiment in time,
please come well prepared for this experiment and work
as quickly and diligently as possible.

Step 2 Measure the thickness of the piston ∆x (see
diagram below). Set up the photogate at the bottom of
the tube and set it to “Gate” mode and 0.1ms precision.
This setup will allow you to measure the time ∆t it takes
for ∆x of the piston to fall through the photogate and
then to calculate the velocity of the mass at the bottom
of the tube (v = ∆x

∆t ). Orient your piston so the lower
half is the cylinder with the smaller diameter. Attach an
eye-hook to the top of the piston and tie a string to it so
you can pull the piston out of the tube easily. Position
the photogate so that it triggers at the beginning and end
of ∆x of your piston. Be sure it does not trigger from
the bottom to the top of the piston nor on the eye-hook.
Clamp the tube and photogate down to the table.

Close the valve on the tube. Place a piece of masking
tape over 1 hole at the base of the tube so that you
have 5 holes OPEN. Choose at least 5 or 6 drop heights.
Drop the piston from each height at least 10 times and
record the times ∆t for each height. Now, place tape
over an additional hole so 4 holes remain OPEN and
repeat the procedure. Calculate the average times ∆̄t
for each height. Do not write on the tube.

Step 3 Convert your time data to velocities using
v = ∆x

∆̄t
and make a plot of v vs. h for 5,4 holes open.

These graphs should look very similar to the graph
on page 3 of this lab guide. Because it would be very
difficult to measure velocity of something falling as a
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function of time, we can measure it as a function of
release height. The purpose of this step is to see whether
the piston is reaching terminal velocity by the time it is
dropped from the top of the tube.

The following questions, Q, are not quiz questions.
They are intended to be answered as part of your lab
report.

Q: Will the piston reach vt for 6 holes? Do we need
to check for 0,1,2,3 holes open?

Questions

7. Suppose your damping tube has 3 holes open and
you find that your piston does reach terminal velocity
when released from a certain height below the maximum
release height. Sketch what you would expect a v vs. h

plot to look like for this experiment. (h is the release
height.) Briefly describe what your plot means.

Step 4 Determine the terminal velocity vt for 0-5
holes open. This can be done by simply measuring
∆t of the piston dropped from the top of the tube for
each configuration of holes open. Measure ∆t many
times and determine the average ∆̄t for each hole setting.

Step 5 Convert terminal velocity data for 0-5
holes open to b using b = mg

vt
and make a plot of b versus

number of holes open. Plot bcrit as a horizontal line
across your graph.

Q: Where do the two lines intersect? Approximately
how many holes need to be open for critical damping?

Step 6 Adjust damping according to your answer to
the previous Q question. Open the lower number of
holes in your range and then use the valve on the tube
to open a hole partially. For example, if your estimate
was 2.5 holes, open 2 holes and open the valve halfway.

3.3. Damped Harmonic Motion

Step 7 If your bcrit is correct, your system should now
be close to critically damped. Attach the piston to the
spring and observe its motion in the tube. Make sure the
spring is colinear with the tube.

Q: Does this system look underdamped or over-
damped? How can you tell?

Step 8 Next, adjust the valve until the system is criti-
cally damped. This is accomplished by visually determin-
ing the border between oscillatory and non-oscillatory
behavior.

Step 9 Take the piston off the spring, release the pis-
ton from the top of the tube, and measure ∆t∗ N times.
Calculate ∆̄t∗±σ∆̄t∗ . ∆t∗ is the time it takes the piston
to fall through the photogate at terminal velocity when
the tube has been critically damped by eye.

4. ANALYSIS

In order to test the model assumed for damping (linear
dependence on velocity), compare the value of spring con-
stant kspring obtained through the more direct method
to the value kby−eye obtained by critically damping the
system by eye. Find these two values and propagate the
errors from m, T , ∆t, and ∆x.

kspring =
4π2m

T 2
± σkspring

kby−eye = m(
g∆t∗

2∆x
)2 ± σkbe

Determine the discrepancy and its uncertainty. Then,
using t-score, determine the level at which these two val-
ues are discrepant and explain what this means. State
your conclusion and explain it!

Questions

8. Three students measure the period of their
piston-spring system with the results (in units of seconds):
1.5± 0.5
1.17± 0.03
1.82± 0.19
Determine the best estimate and its uncertainty for the
period.
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Appendix 1: Lab Equipment, The Damping
Tube

In order to damp our spring motion we will be using
a long vertical tube that has holes drilled in the bottom.
You will be able to cover up the holes in order to increase
the pressure underneath the piston that you are damping.
The more holes that are open, the less damping, and the
piston will be able to move more freely. In order to fine
adjust between the levels of holes open, there is a valve
that can go anywhere between an open hole and a closed
hole. The insides of the valve look something like this. A
screw on the side of the tube allows air to flow through.

Cross section of the fine adjustment valve.


