
Experiment 2, Physics 2BL

Deduction of Mass Distributions.

Last Updated: 2009-05-03

Preparation
Before this experiment, we recommend you review
or familiarize yourself with the following:
– Chapters 4-6 in Taylor
– Moment of Inertia
– t-score

1. PHYSICS

1.1. Moments of inertia

The three moments of inertia that are needed for this
experiment are that of a hollow sphere with outer radius
R and inner radius r:

Ihollow =
2
5
M

(R5 − r5)
(R3 − r3)

and that of a cylinder about its axis whether it is solid:

Isolid =
1
2
MR2

or hollow:

Ihollow =
1
2
M(R2 + r2)

The tricky part is that not all the elements will be di-
rectly measurable. In the case of the racketball, you will
not be able to break apart the ball in order to measure
the inner radius, r. You will use some clever methods to
deducing these measurements from experiment.

Questions

1. The moment of inertia of a solid ball is I = 2
5MR2.

Write out the moment of inertia of a solid ball of
radius r and density ρin that has an outer coating
of radius R (meaning a thickness of R− r) that
has a density ρout, where ρin and ρout are constant.

1.2. Conservation of energy, rolling w/o
slipping, rolling radius

For the first part of this experiment we will be calcu-
lating the moment of inertia of a ball by rolling it down

a ramp. The ball will start from rest at a height, h1,
at the first photogate, PG1. We will measure the time,
t, that it takes for the ball to get to travel a distance,
x, when it arrives at a second photogate, PG2, which is
at a height, h2. As long as the ball starts at rest, the
change in potential energy due to the change in height,
h = h1 − h2, is converted into a final rotational and a
final translational kinetic energy.

mgh =
1
2
Iω2

f +
1
2
mv2

f (1)

In order for the experiment to work it is important for
the ball to be rolling without slipping during its journey
down the ramp. This means that the the ramp must
not be too steep or too slippery. Even though there is
a constant force of friction on the ball, it does no work
on the ball because the frictional force does not act over
a distance. In other words, the frictional force acts over
zero displacement.

In our experiment there is a slight complication be-
cause the ball is not rolling on a flat surface but rather a
square beam that is open on the top (See a cross of the
ball sitting in this beam on page 1). This means that the
rolling radius of the ball is smaller than its actual radius.
We can calculate the rolling radius, R′, by measuring the
width of the beam and using the Pythagorean Theorem,
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or by measuring the length of a full rotation of the ball
and dividing by 2π.

R′ =
√
R2 − (

w

2
)2

Questions

2. If we rolled the ball down a ramp without a groove
would it roll faster or slower than the ball that is
rolling down a square beam open on the top side
(A cross section of the ball sitting in such a beam can
be seen in the diagram on page 1.)? In this case we are
not concerned with resistance or whether the ball will
follow a straight line but merely the effect of rolling
radius on the speed of the ball. Explain your reasoning.

Rolling without slipping gives us the condition ω = v
R′

which can be plugged into the equation for conservation
of energy in equation (1) and solved for I. Recall that
R′ is the rolling radius and not the actual radius.

I = M(R′)2[
2gh
v2
f

− 1]

Instead of measuring the velocity at the bottom of the
ramp we will use the following formula that comes from
motion under constant acceleration. The final velocity,
vf , ends up being twice the average velocity:

vf =
2x
t

(2)

Which can be plugged into the expression for I:

I = M(R′)2[
ght2

2x2
− 1] (3)

Questions

3. What experimental condition no longer holds
if you increase the ramp angle by a large amount
or coat the ramp in oil? Briefly explain why.

2. METHODS FOR STATISTICAL
ANALYSIS

2.1. Standard Deviation and Standard
Deviation of the Mean

Many times you will be making a series of measure-
ments in order to get a mean value. It is important to

keep track of the difference between the error on one of
the measurements, which is the standard deviation, σx,
and the error (or standard deviation) of the mean, σx̄.
The more measurements you make, the smaller the error
on the mean becomes. Let’s make sure we understand
where this comes from.

The equation for the mean of N values labeled xi is a
very simple function of N variables:

x̄(x1, x2, ..., xN ) =
1
N

(x1 + x2 + ...+ xN )

Each one of the variables xi has a standard deviation
given by the following formula:

σx =

√∑
(x̄− xi)2

N − 1

In order to propagate the error from each of xi’s to x̄
we have to use the error propagation equation:

σx̄ =
√

[(
∂x̄

∂x1
)σx]2 + [(

∂x̄

∂x2
)σx]2 + ...+ [(

∂x̄

∂xN
)σx]2

Looking back on the equation for x̄ we see that each
of the xi’s have the same partial derivative.

∂x̄

∂xi
=

1
N

Plugging everything in we get the following:

σx̄ =
√

(
σx
N

)2 + (
σx
N

)2 + ...+ (
σx
N

)2 =
√
N(

σx
N

)2

Which reduces to a simple expression.

σx̄ =
σx√
N

(4)

Questions

4. Suppose you are trying to measure the mass of an
M&M and you measure 50 of them individually and
obtain a mean value of 1.05g and a standard
deviation of .15g. What is the standard
deviation of the mean, σm̄? How many M&M’s
should be massed in order to get a σm̄ ≤ 0.01?
Assume the standard deviation doesn’t change for
more or less mass measurements. In other words, use
σ = .15g as the standard deviation for the second
question.

For extra practice see Taylor #4.18 and 4.26
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2.2. Normal Distributions

It is a fact of nature that many things that seem to
have a uniform value, such as the width of the hairs on
your head or the size of the grains of sand at the beach,
when probed with precise measuring instruments actu-
ally tend to follow what we call a Gaussian, or Normal
Distribution. That means that if we plot a histogram of
these values most will be centered about a mean, with
fewer and fewer at the extreme regions. The resolution
of this curve improves if we decrease the bin size and in-
crease the sample size, but in general these curves have
only two parameters. The mean, x̄, and the standard
deviation, σx.

G(x) =
1√

2πσ2
exp[− (x− x̄)2

2σ2
x

]

The useful thing about these curves is that when we
normalize them (which means that we make the total
area equal to 1) any portion of the area gives the proba-
bility of a value falling with that part of the curve. There
is always a 68% probability of a value falling within 1σ
of the mean, 95.4% probability of a value falling within
2σ of the mean, and 99.7% probability of a value falling
within 3σ of the mean. For example if i told you that
the the average NBA basketball player was 75±3 inches.
If I found a sample of 100 players, I would expect 68 of
them to be between 6 and 6’6”. There should be about
16 players above 6’6” and 16 players under 6’. But what
if we have a value that is a generic tσ away from the
mean and we want to find the likelihood of our getting
that value? All we have to do is find the area under the
curve that is less than tσ away from the mean. To save
you time, these integrals are already calculated for you
in a chart, copied from p.287 in Taylor. The arrows in
the table below show you how to read the chart for when
you want to find the probability that a value is 1.47σ
away from the mean. One tricky point to keep in mind is
whether the probability (area under the curve) that you
are interested in refers to both the left and right of the
curve or just one side. If you are only interested in one

side of the curve you will have to divide these probabilities
in half.
t is known as the t-score and is defined as t = xi−x̄

σx
,

where xi is the value of the measurement in question, x̄ is
the mean of all the measurements, and σx is the standard
deviation of all the measured values of x.

This chart, copied from p.287 in Taylor, gives the percentage
probability that a given data point will be within tσ of the

mean.

Questions

5. Use the chart to find the probability that a given
data point will be 1.52σ away from the mean?
Suppose, for some set of data, the mean is 5.3 and
the standard deviation is 0.4. What is the probability
of getting a value larger than 6.1? Or a value smaller
than 4.9?

For extra practice see Taylor #4.14, 5.20, 5.36
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2.3. Chauvenet’s Criteria for Rejection of Data

Suppose you have one data point that is very far away
from the mean and you want to know whether it is jus-
tifiable to throw it out? In most cases it is better to
not throw away data because you might be biased about
the results of your data. It is always better to simply
take more data to decrease the effect of faulty data points.
Only consider throwing out a point if you feel like there
was some error in the measurment collection. Again, a
safer alternative is to just take more data points until the
suspicious point does not contribute to the final results.
Here is the Chauvenet rule-of-thumb for rejecting data.

tsuspect =
|xsuspect − x̄|

σx

n = N × (1− Prob(tsuspect)) ≤ 0.5

If we make N measurements and we want to challenge
the validity of xsuspect we can only toss it out if n ≤ 0.5.
Here, the Prob(tsuspect) is found in table A.
For extra practice see Taylor #6.4

WARNING: t is a variable commonly used to rep-
resent t-scores and time. Don’t confuse them! When the
variable t is used in these guidelines, it should be clear,
based on the context, whether we are speaking of the
t-score or time.

2.4. Drawing a Histogram

It can be very useful to convert a set of data into a
histogram. This allows you to see which points might
be suspiciously off and wether the standard deviation
looks reasonable and is not being skewed by faulty data
points. Here is the procedure for drawing a histogram
by hand.
1. Determine the range of your data by subtracting the
smallest number from the largest one.

2. The number of bins should be approximately√
N and the width of a bin should be the range divided

by
√
N .

3. Make a list of the boundaries of each bin and
determine which bin each of your data points should fall
into.

4. Draw the histogram. The y axis should be the
number of values that fall into each bin.

5. Sometimes this procedure will not produce a
good histogram. If you make too many bins the his-
togram will be flat and too few bins will not show the

curve on either side of the maximum. You might need
to play around with the number of bins to produce a
better histogram.

3. EXPERIMENTAL PROCEDURE,
RACKETBALLS

3.1. Initial Measurements

Set up the ramp and photogates according to the dia-
gram on the first page. You should tape the photogates
to the table. You can find a more complete diagram of
the set up in the lecture slides. Your TAs should give
you a short demonstration of the setup before you begin.
You will need to measure the inner width of the ramp,
w, the length of the ramp between the photogates, x,
and the heights of the photogates, h1 and h2. Also, you
will need to choose a racquetball. There may be different
brands and colors of raquetballs in the lab. Which ever
brand/color you choose, you must use that same kind of
raquetball throughout the experiment! You also need to
measure the mass of the ball, M and its radius R. You
may use whatever tools you like to make these measure-
ments, just be sure to record the associated uncertainties
and units with each measurement. Finally, calculate the
rolling radius, R′.

3.2. One ball N times

Set the photogates to PULSE mode, toggle switch to
ON, and the black switch to 1ms. A crucial part of this
experiment is releasing the ball consistently. The ball
must begin with zero kinetic energy and from the same
position for each trial. To do this, it is useful to tape a
pen or pencil to the track. The pen/pencil should be per-
pendicular to the track and placed before the first pho-
togate sensor such that, when the ball rests against the
pen/pencil, the ball sits just before the photogate sensor
(The photogate should not be triggered when the ball is
resting against the pen/pencil, but it will be triggered
immediately after you release the ball.).

Acquiring good data in this experiment is difficult and
depends highly on your ability to release the ball con-
sistently between trials. Before you begin your measure-
ments, it is recommended that you practice releasing the
ball. You should do at least 20 practice trials. If you
don’t conduct practice trials, it is likely you will obtain
an imaginary number for σt̄(man) (defined below), which
is incorrect.

After you complete your practice trials, begin measur-
ing/recording the time t for the ball to roll down the
ramp. Do this N times. Normally you would choose the
number of trials N, however, in order to acquire good
data, you need to do AS MANY TRIALS AS POSSI-
BLE. N will depend on the number of balls available.
You should be able to do at least 30 trials, but if there
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are more than 30 balls, it is recommended that the num-
ber of trials you conduct equals the number of balls avali-
able. Now, calculate t̄ and the error in the measurement
of t, σt̄(meas) using equation (4). Use equation (3) to
calculate I ± σI . Remember, if you are using t̄ in your
determination of I, then you must use the uncertainty
associated with t̄, i.e. σt̄, when calculating σI .

Questions

6. Suppose you roll the ball down the ramp 5 times
and measure the rolling times to be [3.092s, 3.101s,
3.098s, 3.095s, 4.056s]. According to Chauvenet’s
criterion, would you be justified in rejecting the time
measurement t = 4.056s? Show your work.

7.You are conducting the racquetball rolling experiment.
During one of the trials your lab partner bumps into
the table. Should you keep the data from this trial?
Explain your reasoning.

3.3. N balls one time

Now collect N balls and record the time for each to roll
down the ramp. From this experiment you can determine
the uncertainty in t that is due to the combined effects
of measurement error and manufacturing error, which we
call the total error σt(total). This is simply the standard
deviation of the time data collected in this experiment.
Calculate t̄ and σt(total).

3.4. Calculation of σt(man), Percent error
for d, and determination of N

Use the following formula to calculate the error due to
manufacturing:

σt(man) =
√
σt(total)2 − σt(meas)2

Now the percent variation in the thickness of the rack-
etball, d, is given by the following relationship:

σd
d

= 27
σt(man)

t

This relationship is obtained by using typical values
for equations (3) and the moment of inertia of a hollow
sphere and then making small deviations from those typ-
ical values to find how sensitive errors in d are to errors in
I and how sensitive errors in I are to errors in t. See the
lecture slides for a detailed derivation of this equation.
The goal of this experiment is to determine σd

d to an ac-
curacy of 1%. Calculate the uncertainty in σd

d , equal to

1√
N

σd

d . How does it compare to the desired result of 1%
or less? Finally, determine what the value of N should
be so that the uncertainty in σd

d ≤ 0.01.

4. T-SCORE ADDENDUM

Earlier we expressed t-score as t = xi−x̄
σx

. However, this
form of t-score assumes x̄ has zero uncertainty. A more
general way of writing t-score would be the following

t =
|x1 − x2|√
σ2
x1

+ σ2
x2

where x1 and x2 are two quantities you are comparing
and both have an uncertainty, σx1 and σx2 respectively.
Note that this expression can be reduced to our previous
expression if we assume one of the values has zero uncer-
tainty. The important point is that the general t-score
equation should be used when comparing two values that
each have non-zero uncertainties.


