
WIN11 Phys 2A Assignment 2.19

2.19 For a spherical celestial object of radius R, the acceleration due to grav-
ity g at a distance x from the center of the object is g = g0R

2/x2, where g0 is the
acceleration due to gravity at the object’s surface and x > R. For the moon, take
g0 = 1.63 m/s2 and R = 3200 km. If a rock is released from rest at a height of 5R
above the lunar surface, with what speed does the rock impact the moon? Hint: Its

acceleration is a function of position and increases as the object falls. So do not use

constant acceleration free-fall equations, but go back to basics.

WARNING: the value given for the initial height may be different for your assign-
ment.
CAUTION: The problem is miss-worded. Instead of “If a rock is released from rest
at a height of nR above the lunar surface, with what speed . . . ” it should say “If a
rock is released from rest at a distance of nR from the lunar center, with what speed
. . . ” where n is an integer that however may be different for different students.

ANS: This is one dimensional motion, the motion taking place along a straight
line radially outwards from the center of the celestial body. So take the x-axis of
coordinates to have origin at the center of the celestial object and be aligned with the
motion of the rock we are going to drop. The acceleration is negative since it points
towards the origin along the coordinate axis. So the acceleration is a = −g0R

2/x2,
and we can write the bsic equation of motion:
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I hope you got this far on your own. The next step, solving this equation, is not
easy. The point is thatthe function x(t) appears on both sides; the 1/x2 on the right
really is 1/[x(t)]2.

Slvingh this requires some trickery. Since we are dropping the rock from some
initial distance x0, it is clear that x(t) will decrease monotonically in time (the
rock is falling!). But since x(t) is monotonic we can invert it. That is, there is a
functiont = t(x) that tells us the time given the instantaneous position of the falling
rock. But then I could think of the velocity v and the acceleration a as functions of
x. In fact, for the latter we already have an expression that gives it explicitly as a
function of x,

This gives us a clue on how to solve the problem. Let’s see if we can find v as a
function of x (instead of a function of t). Writing the acceleration as the derivative
of velocity, and using that the velocity is a function of x, v = v(x), we can use the
chain rule for derivatives:
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This is very nice because any reference to t has disappeared. So we can rewrite the
equation of motion as

v
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We can integrate this readily. For your table of derivatives you recognize the left
hand side as d

dx

1

2
v2, while the integral of the right hand side involves a power,

∫

dx xn =
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Putting these together and including a constant C of integration,
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To fix the value of C we use initial conditions: the motion starts from location x0

with velocity v0 giving C = v2
0/2 − g0R

2/x0, or
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If you want to get x(t) you can use here v = dx/dt and integrate. But for our
purposes this is enough since we need to compute the velocity as the rock traverses
from some height to another.

You can now do the numerics and plug into your assignment.

Additional ”fun.” OK, I appreciate that this can only be ”fun” for a nerd. But

you are either an engineering or a chemistry major ;) If the initial height of the
rock above the lunar surface, x0 − R, is very small compared to the radius of the
moon, then we should see the usual constant acceleration result emerge. Indeed,
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which gives
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which you must recognize as the correct result for constant acceleration −g0. If you
know about Taylor expansions (if you don’t, ignore this!), you can find the small
corrections to this. For example, if we take x = R and Taylor expand
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