Quiz 4 solutions are in order of the questions for version 1.
(1). Correct answer is D The y -component of the force is just $I L B \sin \theta$ where θ is the angle between the field and the current direction. Here this angle is 25° and so

$$
F_{y}=(2)(.3)(1.2) \cos (25)=.65 \mathrm{~N}
$$

By the right hand rule, this is in the positive \hat{j} direction.
(2). Correct answer is C

The torque is the current times the area times the field times θ where θ is the angle between the field and the normal to the loop. Hence torque equals

$$
\sin (25)(.12)(1.2)(2)=.12
$$

(3). Correct answer is A

The centripetal acceleration is v^{2} / R. For a particle in a magnetic field, $v=q B R / m$. This gives

$$
a=\left(\frac{q B R}{m}\right)^{2} / R=\frac{\left(2 \times 1.6 \times 10^{-16}\right)^{2}(.5)^{2}(.4)}{\left(6.68 \times 10^{-27}\right)^{2}}
$$

(4). Correct answer is B

The induced voltage is given by $v B L \sin \theta$. The angle here is 40° and hence we get

$$
\Delta V=(20)\left(5 \times 10^{-5}\right)(1.2) \sin (40)=.77 \mathrm{mV}
$$

(5). Correct answer is D

The induced electromotive force equals the rate of change of the magnetic flux. Here, the flux change is

$$
\frac{\Delta \Phi_{M}}{\Delta t}=.20^{2}(.9-.3) / .06=.4 \mathrm{~V}
$$

This gives rise to a 40 mA current. Since the field into the board is decreasing, the current will flow in the direction needed to create more field into the board; this is the clockwise direction, hence the current goes from b to a
(6). Correct answer is B

The flux is $B \times N_{\text {turns }} \times A \times \cos \theta$, where the angle is between the coil normal and the magnetic field. giving

$$
.8 \times 4 \times .09 \cos (30)=.25
$$

(7). Correct answer is D

All the choices other than D results in a change of flux through the coil.
(8). Correct answer is B

When the switch is first thrown, all the battery voltage appears across the inductor. This voltage than decays in time according to the general formula

$$
V(t)=V_{0} e^{-t / \tau}
$$

where the time constant for this R-L circuit is $\tau=L / R=2.5$ secs. Therefore, the voltage equals 24 when $24=60 e^{-t / 2.5}$ which can be solved to find $t=2.3 \mathrm{~s}$.
(9). Correct answer is C

Since \vec{B} is parallel to the velocity vector, there is no induced voltage and no current,
(10). Correct answer is A

The minus sign is because induction always acts to oppose the change in flux. None of the other choices are always correct.

